
ArcInfo™ 8.2

ArcSDE™ Configuration and Tuning Guide for Microsoft® SQL Server™

Copyright © 1986–2002 ESRI

All Rights Reserved.

Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable international
laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval
system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, CA 92373, USA.

The information contained in this document is subject to change without notice.

RESTRICTED/LIMITED RIGHTS LEGEND

U.S. Government Restricted/Limited Rights: Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall the Government acquire greater than
RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject
to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987);
and/or FAR §12.211/12.212 [Commercial Technical Data/Computer Software]; DFARS §252.227-7015
(NOV 1995) [Technical Data]; and/or DFARS §227.7202 [Computer Software], as applicable.

Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, MapObjects, ArcView, ArcIMS, SDE, and the ESRI globe logo are trademarks of ESRI, registered in the
United States and certain other countries; registration is pending in the European Community. ArcSDE, ArcInfo
Librarian, Spatial Database Engine, ArcCatalog, ArcToolbox, ArcMap, ArcGIS, ArcStorm, ArcInfo, ArcObjects,
ArcExplorer, ArcEditor, and the ArcInfo logo are trademarks and www.esri.com is a service mark of ESRI.

The names of other companies and products mentioned herein are trademarks or registered trademarks of their
respective trademark owners.

Iii

Contents
Chapter 1 Getting Started 1
Managing databases and logins 1
Connecting to Microsoft SQL Server 2
Arranging your data 3
National language support 3
Support for Microsoft SQL Server 2000 4

Chapter 2 Configuring SQL Server 5
Installing Microsoft SQL Server 5
Managing databases and filegroups 5
Managing Security 15
Managing transaction logs 24

Chapter 3 Configuring DBTUNE storage parameters 27
The SDE_DBTUNE table 27
Editing the SDE_DBTUNE table 29
Understanding the SDE_dbtune keywords 29
DEFAULTS keyword 30
DATA_DICTIONARY keyword 31
LOGFILE keywords 31
IMS_METADATA keywords 32
The NETWORK_DEFAULTS keyword 34
Text in row 41
Fill factor parameters 41
Clustered Indexes and their tables 42

Chapter 4 Managing tables, feature classes, rasters, and views 44
Setting up the dbtune table 44
Data creation 44
Creating and populating raster tables 49
Exporting data 50
Schema modification 50
Using ArcInfo software’s ArcCatalog and ArcToolbox applications 51
Defining ArcSDE views 55
Visualizing data with sdegroup 58

Chapter 5 Connecting to SQL Server 59
Making your first connection 59
Using the ArcSDE Direct Connect Driver 63

iv ArcSDE Configuration and Tuning Guide for MS SQL Server

Chapter 6 National language support 73
SQL Server database collation designator 73

Chapter 7 Standby servers and log shipping 75
Implementing a standby server 75
Log shipping 82

Chapter 8 Backup and recovery 100
Introduction 100
Moving data using backup and restore 100

Chapter 9 Configuring snapshot replication 108
Implementing snapshot replication 108

Chapter 10 Configuring transactional replication 144
Implementing transactional replication 144

Appendix A ArcSDE compressed binary 157
Compressed binary 157
The spatial grid index 159
Indexes 164

Appendix B The components of the installation 169
ArcSDE installation basics 169
How to start the ArcSDE service 171
How to stop the ArcSDE service 171
Manually deleting and creating an ArcSDE service 172
The "DATASOURCE" of an ArcSDE service 173
Using DATASOURCE to separate ArcSDE and the SQL Server host 173
Using DATASOURCE with SQL Server 2000 174
Upgrading SDE 3.0.2 or ArcSDE 8.0.2 to ArcSDE 8.1 175
Upgrading an ArcSDE 8.1 instance on SQL Server 7 to SQL Server 2000 176
Upgrade examples 177
Troubleshooting the ArcSDE service startup 181

Appendix C Storing raster data 186
Raster schema 188

1

CHAPTER 1

Getting started

Installing ArcSDE™ and loading data into a database are arguably simple

processes, especially when using tools such as ArcGIS™ software’s

ArcCatalog™ or Microsoft SQL Server 2000’s Enterprise Manager. So, why

is there a configuration and tuning guide? While installation and data loading

can be relatively straightforward, relational database management systems are

dynamic. Relational databases offer highly efficient storage, searching, and

modeling mechanisms that can serve many users simultaneously. It takes

some effort to build and maintain a database that performs optimally. This

book details how to manage your ArcSDE instance within this environment

from setting up a two- or three-tiered server to serving your spatial data to

multiple users and leveraging SQL Server advanced functionality.

Managing databases and logins
Microsoft SQL Server allows for multiple databases. Databases can be mobile, detached, and
reattached to other servers using backup and restore or sp_detach_db and sp_attach_db.
Databases can be replicated to other servers, can be used as standby servers, or can employ
log shipping to distribute logs in backup environments.

Logins access databases as users. ArcSDE 8.1 has special requirements for managing users
and databases. You can use integrated (Windows NT or Windows 2000) logins or SQL
Server authenticated logins.

ArcSDE data is stored in SQL Server databases in tables, managed with stored procedures and
triggers, and accessed with indexes. These entities are used in conjunction to maximize query
performance and minimize database maintenance.

2 ArcSDE Configuration and Tuning Guide for MS SQL Server

Connecting to Microsoft SQL Server
The ArcSDE server provides two different ways to connect to your Microsoft SQL Server 7.0
or 2000 instance. ArcSDE clients may either connect to the ArcSDE service or directly to the
database.

The traditional ArcSDE service connection method uses a three-tiered architecture. ArcSDE
clients connect to the ArcSDE service, which then spawns a dedicated gsrvr process that
connects to the database server. The gsrvr process brokers the spatial data between the
ArcSDE client and the database server. The ArcSDE service and the gsrvr processes typically
reside on the same machine as the database server, while ArcSDE clients typically operate on
remote machines.

The direct connection method uses a two-tiered architecture. The ArcSDE clients connect
directly to the Microsoft SQL Server. In this method, the ArcSDE gsrvr middle tier has been
moved into the ArcSDE client. The ArcSDE clients still run on remote desktops, while the
database server runs on a server class machine.

It is possible to use a combination of these two methods on any given database server. With a
mixed configuration, some of the ArcSDE clients may be connected directly to a SQL Server
server, while others connect to an ArcSDE service.

ArcSDE
clients

ArcSDE
clients

ArcSDE
clients

SQL Server

ArcSDE
Service

SQL Server

ArcSDE
Service

SQL Server

Three-tiered
system

Two-tiered
system

Mixed two-tiered
and three-tiered

system

Figure 1.1: With the traditional three-tiered system the ArcSDE client applications connect to the
ArcSDE service, which in turn connects to the server. Within the two-tiered architecture the ArcSDE
client applications connect directly to the server. Under a mixed architecture some of the ArcSDE client
applications may connect directly to the ArcSDE service, while others connect directly to the server.

Chapter 1 Getting started 3

Arranging your data
Every table and index created in a database has to be stored somewhere. How you store these
tables and indexes can affect how well your database performs under multiuser scenarios and
complex queries.

The DBTUNE table

How is the placement of the tables and indexes controlled? ArcSDE uses storage parameters
listed in the DBTUNE table that define how and where tables and indexes are created and
stored. Storage parameters are grouped into configuration keywords that identify how and
where a particular table or index is created.

Prior to ArcSDE 8.1, the configuration keywords were stored in the dbtune.sde file
maintained under the ArcSDE etc directory. The dbtune.sde file is still used by ArcSDE 8.1 as
the initial source. When the ArcSDE 8.1 sdesetupmssql.exe command executes, the
configuration parameters are read from the dbtune.sde file and written to the DBTUNE table.
You can import existing dbtune files into the ArcSDE dbtune table using the sdedbtune
command. You can make direct edits to this table using the SQL Server Enterprise Manager.

ArcSDE 8.1 simplifies storage parameters by using actual t-sql CREATE TABLE and
CREATE PROCEDURE storage parameters.

The ArcSDE 8.1 installation creates the DBTUNE table. If the dbtune.sde file is absent or
empty, sdesetupmssql.exe creates the DBTUNE table and populates it with default
configuration keywords representing the minimum ArcSDE configuration.

The ArcSDE 8.1 dbtune table has several default settings designed to provide a fast, scalable
server “out of the box.” These settings influence clustered indexes, text in row, and network
packet size.

In almost all cases, you will populate the table with specific storage parameters for your
database. Chapter 3, ‘Configuring DBTUNE storage parameters’, describes the DBTUNE
table and all possible ArcSDE storage parameters and default configuration keywords in
detail.

National language support
ArcSDE 8.1 supports multiple character sets through the use of the SQL_CHARSET
environment variable.

4 ArcSDE Configuration and Tuning Guide for MS SQL Server

Support for Microsoft SQL Server 2000
Microsoft SQL Server 2000 is fully supported. Some new features of SQL Server 2000 are
directly accessible in ArcSDE 8.1 such as text in row, indexable views, and log shipping.

5___

CHAPTER 2

Configuring SQL Server

Microsoft SQL Server is easy to set up and configure. SQL Server has

outstanding management tools and wizards to assist you in performing

database functions. Due to its ease of use and rich user interface, there

are many possible configurations with SQL Server. This chapter guides

you through ArcSDE-specific rules for creating and managing databases,

logins, and transaction logs.

Introduction
This chapter picks up where a new ArcSDE installation leaves off. You’ve installed
ArcSDE, let it create an sde database and login/user for you. Now you must consider
how you should configure SQL Server for ArcSDE, design databases, manage security
accounts, and understand the MS SQL Server transaction log.

To properly setup ArcSDE for MS SQL Server you must:

1. Make some configuration changes to MS SQL Server. These are detailed in the
section entitled “Step 1: Installing and configuring Microsoft SQL Server.”

2. Design your database or databases. You can put all your data into the ‘sde’ database
or create new databases for your spatial data. This is covered under the section
“Step 2: Creating and Managing databases and filegroups.”

3. Design and configure your security. You must create logins and add them to the sde
and other databases as users. You can use Windows Authentication as well. Section
“Step 3: Managing Security” describes this.

4. Understand the MS SQL Server Transaction Log. The transaction log is a serial
record of most activity against a database. The recovery process may employ it.
Section “Step 4: Understanding the SQL Server Transaction Log” discusses this.

Step 1: Installing and Configuring Microsoft SQL Server
Installation and configuration of Microsoft SQL Server are simple processes. The
installation of SQL Server requires one configuration change.

Installation of MS SQL Server:

1. Use Mixed-Mode Security: For the ArcSDE post-installation to work, you must
choose mixed mode security. This specifies that your server supports both Windows
NT/Windows 2000 logins and SQL Server Authenticated logins. ArcSDE 8.1 for
Microsoft SQL Server supports both modes of security. If you want to operate in
windows-only mode, you cannot run the ArcSDE post-installation utility. See
directions below for windows-only installations. Security modes can be changed
within SQL Server through the server properties in the Enterprise Manager. Right

6 ArcSDE Configuration and Tuning Guide for MS SQL Server

click your server in the Enterprise Manager, select properties and then the security
tab. Enable mixed mode security.

2. Codepage: Choose a codepage that is appropriate for your language. ArcSDE will
work with most codepages, but is not presently supported running in mixed code
page environments. This means that all your spatial databases should have the same
collation as the ‘sde’ database.

MS SQL Server Serverwide Configuration

1. Limit SQL Server Memory Consumption: Do not allow MS SQL Server access
to all your server’s memory. By default, SQL Server will use as much memory as it
requires. On busy systems, SQL Server can force other applications, including
ArcSDE, to page, compromising their response time and scalability. Limit SQL
Server’s memory consumption by using a fixed memory size or setting a maximum
memory size. To do this, right click the server in the Enterprise Manager and select
properties. In the next form, select the memory tab. Hard code a memory limit or
set an upper boundary to 50% of total ram. Adjust this number up until your server
begins to swap and response time slows. On very busy systems, 50% may be too
much.

2. Use Lightweight Pooling: On busy systems, configure SQL Server to use
“lightweight pooling” or Windows NT Fibers. Fibers, which run as processes within
a thread, reduce the number of thread context switches the processors must make.
Access this setting in the Enterprise Manager’s server properties under the Processor
tab, or through sp_configure. See the MS SQL Server Books Online for more
information.

3. Boost SharedSection in the Registry: This is especially true for ArcSDE servers
supporting large ArcIMS sites. The setting controls the heap size for non-interactive
desktop apps – the amount of memory available to spawn and support gsrvr
(ArcSDE client connections). Locate this setting in the registry under:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems
under the “Windows” entry. This entry contains a string, contained in which is
SharedSection=1024,3072,512. Boost the last entry to 1024. See the book
“Managing ArcSDE Services” for more information.

4. CPUs: If your database will support many multi-versioned editors, consider that
versioned queries are cpu intensive. Consider buying more cpu than less. Make
sure you consult the ESRI System Integration system sizing tools before you buy a
server to support this type of system.

5. Number of SQL Server Licenses: This depends upon which licensing mode you
employ. If you choose client access licensing, you will need as many licenses as
users who will connect simultaneously, plus one for the ArcSDE application server
(the ArcSDE Service).

Support for SQL Server Named Instances

At MS SQL Server 2000, you can install multiple SQL Servers onto the same server.
Multi-instance SQL Servers are known as “Named Instances.” ArcSDE supports named
instances in the same manner as a default instance.

To configure ArcSDE to work with a Named Instance, do one of the following:

1. During the ArcSDE Post-Install, type in the named instance whenever you are
prompted for a datasource.

2. Use the sdeservice –o create tool, located in %sdehome%\bin to create a service
pointing at a particular Named Instance of SQL Server. For example:

Chapter 2 Configuring SQL Server 7

Sdeservice –o create –l <license server> -p <sde password> -s
<named instance here> …

See Appendix B for details on how to use the sdeservice command to identify a
datasource.

Step 2: Creating and Managing databases and filegroups
Once you have installed the ArcSDE software, created an sde database and user, and
made some SQL Server serverwide configuration changes, you will begin to design
databases to support your applications. You can either use a single database (the ‘sde’
database) or several databases to store your data. You can employ filegroups and files to
create a simple non-raid striping strategy, or employ a disk array for full data striping.

ArcSDE Multi-Database Model

If you choose to store your data in multiple databases, keep these rules in mind:

1. Feature classes (layers) and rasters span database boundaries. This means
when a user connects to SQL Server via ArcSDE, that user is presented with a
list of feature classes and rasters she has privilege to in all databases. You can
disable this behavior by setting the CROSS_DB_QUERY_FILTER dbtune
parameter to 1 in the SDE_dbtune table.

2. Non-spatially enabled tables (registered or not) are filtered across database
boundaries. For example, if the cad user has two DBMS tables, income_avg in
the sde database and traffic_stats in the county_hiways database, the cad user
must explicitly connect to the county_hiways database to view the traffic_stats
table.

3. DML (select, insert, update, delete) statements are allowed across databases.
For example, you connect as user ‘cad’ and can select, insert, update, and delete
data from any spatially enabled table (a layer or feature class) in any database.

4. DDL (create table, alter table, drop table) statements cannot occur across
databases. If you connect as user ‘cad’ to the ‘county_hiways’ database, you
can only load data (shp2sde, the ArcCatalog shapefile to geodatabase utility)
into the ‘county_hiways’ database.

5. If you do not specify a database when you connect to ArcSDE, you connect to
the sde database. The default database is sde, not a user’s default database.

6. The ‘sde’ database is mandatory. It serves as the “master” database of the
ArcSDE application.

What is CROSS_DB_QUERY_FILTER?

CROSS_DB_QUERY_FILTER is a new dbtune table parameter that allows an ArcSDE
service to disable feature class and raster cross database query behavior. By default, it is
set to 0 meaning allow cross database querying of feature classes and rasters. If you set it
to 1, your connected clients can only work with feature classes and rasters in the
presently connected database.

Why should you enable CROSS_DB_QUERY_FILTER?

1. To speed up your connection and layer list times.

2. To make your database a bit more secure – what they can’t see can’t hurt them.

Why should you disable CROSS_DB_QUERY_FILTER?

8 ArcSDE Configuration and Tuning Guide for MS SQL Server

1. Cross database queries are useful – fewer reconnects to SQL Server to fetch data in
another database.

2. Reduce the number of gsrvrs spawned by an ArcIMS server. Each time you connect
to a different database with ArcIMS, the spatial server will create new ArcSDE
connections (new gsrvrs). If you connect to the same database (even if you fetch
data from a different database), the spatial server will reuse any existing gsrvrs.

How Many Databases?

Now you must decide whether or not to employ a multi-database strategy or put all your
spatial data into the ‘sde’ database.

Using only the ‘sde’ database – decision criteria

1. Administrative ease. If you have all your spatial data in one database, then your
recovery and security strategies are less complex. Furthermore, you and your users
will not have to contend with the ArcSDE multi-database model and it’s overhead.
Finally, you’ll have to backup only one database. If you have more than one
database, you must always backup all your databases at the same time to keep the
sde database in sync with the others.

2. Total number of tables will not be large. If you will have fewer than 100 total
spatially enabled tables, put them all into the sde database. Remember, there are 3-6
tables per feature class, and 6 tables per individual raster (meaning if you store one
image file as one raster layer). Fewer tables in a database means it will take less
time to determine what the connecting user can access.

Using multiple databases – decision criteria

1. Very active read-write system. If you will serve data to more than a handful of
users, employ multiple databases. Read-write ArcSDE servers will most likely use
the sde_logfile and sde_logfile_data tables in the sde database and the versioning
delta tables in non-sde databases. Spreading data into different databases (hence
files) and hopefully across disks will lessen i/o contention. Servers serving data to
larger scale, integrated ArcIMS-ArcGIS clients, or sites using the Metadata Server
should consider using multiple databases.

2. Cleaner database design. It makes for a cleaner design to store data “thematically”
into separate databases. For example, elevation data stored in the elevation database,
roads, highways and railroads in the transportation database.

3. Scalable systems. If you have a large scale server with a lot of memory, disk and
cpu power, administration of multiple databases becomes easier.

4. Raster and vector data. As the number of tables increases in a database, fetching
performance against Raster layers will begin to decline for non-data owners because
ArcSDE does not cache raster table permissions. There are three ways to store
rasters in ArcSDE:

a. Mosaics: rasters that have the same cell registration can be mosaicked to
one another creating a single large, seamless image. The advantage here is
that the number of individual tables in the dbms is reduced. All ArcSDE
raster clients support this format.

b. Multiple rasters in a single raster table: Using the sderaster tool, you can
load multiple rasters of any type into a single raster layer. The images are
not mosaicked but still loaded into the same set of raster dbms tables.
Images within the table are identified by their image id (-v) value.
Presently, only ArcIMS clients support this. ArcGIS will support this
format at a future (post 8.2) release.

Chapter 2 Configuring SQL Server 9

c. Multiple rasters in multiple dbms raster tables: This is equivalent to
loading each raster image file into it’s own raster dbms table. As there are
5 dbms tables per raster layer, this solution will quickly create many tables
in the dbms. This strategy should be avoided whenever possible in favor of
points a and b.

Follow these general guidelines with regard to raster and vector when designing
databases:

1. Create a separate database for your raster data if you will load
many images or have many vector layers. Set
CROSS_DB_QUERY_FILTER to 1 in the dbtune table. Keep
in mind that you will most likely spawn extra gsrvrs on the
server.

2. If will have relatively few vector and raster layers, put them
into the same database.

3. Mosaic or use the multiple rasters per raster layer whenever
possible.

Client Side Considerations

You will quickly learn that what you do on the client very much matters to how your
ArcSDE Server performs. Henceforth, your decision on whether to use multiple
databases also depends upon what your clients will be doing.

1. ArcIMS – If ArcIMS servers see a different database in a connection string, then
they will spawn a new set of gsrvrs to support that map service. If you have a
distributed ArcIMS solution with multiple ArcIMS servers hosting many virtual
servers, you may exhaust the windows non-interactive desktop memory heap. You
have three options:

a. Put all your data into a single database like the ‘sde’ database.

b. Always connect to the same database, but fetch your data from another
database. This implies that you have not changed the
CROSS_DB_QUERY_FILTER setting in the SDE_dbtune table.

c. Increase the SharedSection parameter listed above under MS SQL Server
Serverwide Configuration.

2. ArcGIS – ArcGIS, by default, writes to an sde_logfile and sde_logfile_data table if
more than 100 features are selected. The record of these writes ends up in the
transaction log. Read-write ArcGIS clients will also hit the
sde_states,sde_tables_modified, sde_lineages_modified, and the sde_lineages tables
in addition to the multi-versioned tables that comprise a feature class. You should:

a. Use multiple databases. ArcGIS supports the multi-database model very
well. You can create RelationshipClasses across database boundaries, for
example, only if you do not disable CROSS_DB_QUERY_FILTER.

b. Set a high SelectionThreshold in your registry to store more selected
features locally instead of on the sde server. Setting this to 1000 features is
reasonable for many client systems. Keep in mind that this setting requires
more processing on the client side, so make sure you have enough memory
and cpu to handle it.

3. Integrated Systems – Metadata Server. The Metadata server uses the sde_logfiles
and sde_logfile_data tables extensively. Therefore, if your server is in an integrated

10 ArcSDE Configuration and Tuning Guide for MS SQL Server

ArcGIS-ArcIMS environment with the Metadata server, you should use multiple
databases and set a high SelectionThreshold.

Guidelines for Database Creation

Now that you have decided how many databases to create, here are some guidelines for
creating any database to store spatial data.

1. If the Post-Installer created your sde database, you should increase the autogrowth
increment of both the database and transaction log. While you’re at it, make a
backup of it.

2. Store all your data files, transaction logs and tempdb away from the paging file,
unless you’re sure your server will never page.

3. Separate your data files from your transaction logs.

4. If you have a RAID 5 solution, keep your transaction logs and entire tempdb out of
the disk array.

5. Autogrow the data files in large increments.

6. Leave AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS
enabled. Disable auto shrink.

7. After you create a database, make a backup of it to force SQL Server to manage the
transaction log.

8. Employ a hardware striping solution, favoring RAID (disk array) over Filegroups
and Files.

9. Employ data segregation strategies (keeping tables from indexes, or certain types of
tables from other tables) only if you are certain it will improve performance or
alleviate administrative burdens.

Hardware Striping Solutions

For production ArcSDE systems serving many simultaneous users and storing large
amounts of data, you must employ a hardware striping solution. Your best disk/data
organization strategies involve spreading your data across multiple disks. With data
spread across multiple disks, more spindles actively search for it, increasing your fetch
times. Spreading your data across many disks will decrease disk contention as well.
However, there is a saturation point in which too many disks will slow down a query.
There are two main ways of achieving striping: Filegroups and RAID. You can also
combine the two – create filegroups within disk arrays.

Filegroups and Files

Filegroups and files compose a database. Data resides in files that are grouped by
filegroups. The database’s primary file of the primary filegroup has a *.mdf extension,
while secondary files use *.ndf. Log files are stored in *.ldf files. A filegroups group
files into administrative units. Database files cannot span disks, filegroups can.

Files fill proportionately according to their membership in a filegroup. For example, if
three files comprise a filegroup, and file A is 20 Mb, file B is 40 Mb, and file C is 60 Mb,
one extent is allocated from file A, 2 from B, and 3 from C whenever space is requested
from a filegroup. All database objects are created by default on the primary filegroup.
Placement onto other, non-default, filegroups is controlled with the “on” keyword of the
“create” statement. ArcSDE controls placement through the use of the SDE_dbtune table
in the same format – by adding the keyword “on” to your storage parameters.

Chapter 2 Configuring SQL Server 11

Not all ArcSDE installations will be on multiprocessor server class machines with disk
arrays or many disks. ArcSDE is certified to scale from Microsoft Data Engine (MSDE)
to SQL Server Enterprise Edition. If you are serving data to a few clients on a single
processor machine with one or two disk drives, employing filegroups offers no
advantage.

RAID

Redundant Arrays of Inexpensive or Independent Disks (RAID) boosts fetching
performance by striping data into slices across multiple disks in the disk array. By
spreading data across multiple disks, all disks share the burden of I/O operations thus
reducing the chance of a bottleneck occurring on one disk. RAID’s performance
increases as you add disks to the array. The operating system and database will see only
one volume, a logical representation of the entire disk array.

Striping Design Considerations

There are two main striping designs, smear and plaid.

1. Smear, in the SQL Server context, signifies the creation of a single filegroup with
one large file in a disk array, or a single filegroup with multiple files spread across
several disks. In this configuration, the RAID solution will most likely perform best.
When you load your data, you lump all your data and indexes into the same
filegroup and leave it to SQL Server to fetch it. There is no segregation of tables and
indexes, nor hot and cold tables. Smear’s advantages include ease of administration
and possibly fewer disks to purchase.

2. Plaid connotes the strategic and calculated placement of tables and indexes onto disk
arrays or filegroups that are independent of each other. The segregation of
components tends to reduce the chance for i/o contention. In such a configuration,
you create different filegroups for your indexes and tables, and perhaps types of
tables (business, feature, and spatial, for example). In a RAID solution, you would
have different disk arrays for your tables and indexes, or even different filegroups
within your disk arrays. Plaid’s advantages are that on very large databases with
many concurrent users, data segregation may enhance scalability.

There is no concrete performance data indicating that on small to mid-size databases one
solution performs better than another. For very large databases, Plaid may be the best
since more data must be fetched from disk. The clustered index is used overwhelmingly
in all types of fetches. Many operations do not use the non-clustered indexes at all.

One Final Word

You’ll rarely have to worry about fetching from disk if you have enough ram to cache the
database or if the database is small enough to be cached.

12 ArcSDE Configuration and Tuning Guide for MS SQL Server

Example Databases

This section offers some example spatial database design strategies based upon client
usage considerations and ease of administration. Cost of components is not discussed.

Supporting primarily ArcIMS clients with both read-only vector and raster
data

1. If you have less than 30 –40 combined vector and raster layers:

a. Create the sde database on a disk array. Autogrow your datafiles and
transaction log in large increments.

b. Load the raster data into mosaics or the “multiple rasters per raster layer
format” (reducing the number of tables in the database).

2. If you have more than 40 combined vector and raster layers:

a. Create the sde database on a disk array. Place the transaction log onto a
different disk.

b. Create a Raster database on a disk array. Set both initial size and
autogrowth parameters to large incrementss

c. Create a database or series of databases for your vector data, organizing
them by project or thematically. Try to keep the total number of databases
low. Place the transaction log onto a different disk and autogrow all
datafiles and transaction log files in large increments.

3. Set CROSS_DB_QUERY_FILTER to 1 in SDE_Dbtune. If you have no raster
data, skip this section.

4. Calculate the number of gsrvrs that will run on the ArcSDE server as:

a. 2(number of spatial servers) + 2(number of query servers)

b. multiply this number by 2 for each unique database listed in your
<SDEWORKSPACE> tags in your map service files.

The presumes that you have not changed the default ArcIMS thread settings. By default,
ArcIMS runs two instances of the spatial server per installed spatial server, and two
instances of the query server per installed query server. For example, you have one
spatial server and one query server configured, and you author one image service. The
number of gsrvrs created on the server will be 4 – 1 per instance of the spatial server (2
gsrvrs), and 1 per instance of the query server (2 more gsrvrs). If you author another axl
that connects to another database, you’ll get an additional 2 gsrvrs from the spatial server.

If you begin creating a lot of gsrvrs on the ArcSDE server, you may exhaust heap
memory, forcing you to increase the windows SharedSection setting listed in Step 1
above.

Supporting primarily read-only ArcGIS clients with both vector and raster
data

1. Create the sde database within a disk array. Set autogrow to a large increment.
Create or move the sde transaction log on another disk outside the disk array.

2. Backup the sde database.

3. Create a raster database on the disk array. Set it to a large initial size with a large
autogrowth rate commensurate with the size of your data.

4. Create a database or series of databases for your vector data, organizing them by
project or thematically. Set each database to a large initial size and growth
increment commensurate with the size of your data.

Chapter 2 Configuring SQL Server 13

5. Load your rasters into as few mosaicked seamless images as possible.

6. Set CROSS_DB_QUERY_FILTER to 1 in the SDE_Dbtune table.

7. If your workflow includes large selection sets (routinely greater than 5000),
customize the SDE_Dbtune:

a. Add entries for logfile parameters under the LOGFILE_DEFAULTS
keyword. See the Chapter 3 for details. Increase all FILLFACTOR
configuration strings to 95 percent.

b. If you have a lot of hardware, a very busy system, and a very large
database, consider placing the logfile tables and indexes onto a separate
array.

8. Add the SelectionThreshold setting to all ArcGIS client machines. For a workflow
including large selection sets, boost the setting to 5000 machine permitting.

Supporting read-write ArcGIS clients

1. Create the sde database within a disk array. Set autogrow to a large increment.
Create or move the sde transaction log on another disk outside the disk array.

2. Backup the sde database.

3. If you will support large selection sets (greater than 5000), add the logfile parameters
and the LOGFILE_DEFAULTS keyword to SDE_Dbtune table. Increase
FILLFACTOR config_strings to 95 percent.

a. If you have a lot of hardware, a very busy system, and a very large
database, consider placing the logfile tables and indexes onto a separate
array.

4. Create a database or series of databases for your vector data, organizing them by
project or thematically. Set each database to a large initial size and growth
increment commensurate with the size of your data.

5. Set CROSS_DB_QUERY_FILTER to 1 in the SDE_Dbtune table.

6. Add the SelectionThreshold setting to all ArcGIS client machines. For a workflow
including large selection sets, boost the setting to 5000, machine permitting.

Supporting Large, Integrated Systems (ArcIMS, ArcGIS, MapObjects Java)

This example presumes your ArcSDE server will support ArcIMS map services, ArcIMS
metadata explorer services, ArcGIS editors, and other clients like the ArcSDE java api or
MapObjects.

1. Create the sde database within a disk array. Set large autogrowth increments. Move
the sde transaction log to another disk, if possible, outside the disk array. Backup the
sde database.

2. Add the logfile parameters and the LOGFILE_DEFAULTS keyword to
SDE_Dbtune table. Increase FILLFACTOR config_strings to 95 percent.

a. Consider placing the logfile tables and indexes onto a separate array.

3. Customize the ims* SDE_Dbtune keywords to place ims_metadata objects outside
the sde database.

14 ArcSDE Configuration and Tuning Guide for MS SQL Server

7. Create a database or series of databases for your vector data, organizing them by
project or thematically. Set each database to a large initial size and growth
increment commensurate with the size of your data.

8. Set CROSS_DB_QUERY_FILTER to 1 in the SDE_Dbtune table.

9. Add the SelectionThreshold setting to all ArcGIS client machines. For a workflow
including large selection sets, boost the setting to 5000, machine permitting.

Example: Using SQL to create an sde database

The easiest way to create a database, filegroups, and data files is to use the SQL Server
Enterprise Manager. Expand your server, right-click the databases node, and select “New
Database.” However, you can employ SQL scripts to automate this activity.

This example creates an sde database with one filegroup and one large datafile within a
RAID array. The log file is created on a separate disk. The filegroups are created so that
the ArcSDE system tables are left on the primary filegroup.

Create Database sde
On Primary /*created on primary filegroup */
(NAME = sde_dat,
FILENAME = ‘g:\data\sde.mdf’,
SIZE = 40,
MAXSIZE = UNLIMITED,
FILEGROWTH = 15%),

FILEGROUP SpatialData /*specify another filegroup to
separate*/
(NAME = SpatialData_dat, /*spatial data*/
FILENAME = ‘g:\data\SpatialData.ndf’,
SIZE = 400,
MAXSIZE = UNLIMITED,
FILEGROWTH = 400)

LOG ON
(NAME = ‘SDE_LOG’, /*place log on different drive*/
FILENAME = ‘F:\logs\sde_log.ldf’,
SIZE = 200,
MAXSIZE = UNLIMITED,
FILEGROWTH = 200)

GO

/*add logins to the server*/
sp_addlogin ‘sde’, ‘esri.sde’, ‘sde’
go
sp_addlogin ‘bob’,’esri.bob’,’sde’
go
sp_addlogin ‘carto’,’world.round’,’sde’
go

/*switch to the sde database and
add users */

use sde
go
sp_grantdbaccess ‘bob’
go
sp_grantdbaccess ‘sde’
go
sp_grantdbaccess ‘carto’
go

/*permissions*/
grant create table to sde
grant create procedure to sde
grant create view to sde

grant create table to bob
grant create table to carto

Chapter 2 Configuring SQL Server 15

Step 3: Managing Security
Once you have designed and created your databases, you now much configure your
security accounts. Create logins and users with specific functionality in mind, then assign
them to roles and finally grant permission to data to those roles.

Introduction to SQL Server Security

Microsoft SQL Server has ‘logins’ and ‘users.’ A login is a named account that has
access rights to the database server but not necessarily access to a database. A user is a
login that has been granted access to a database.

There are two types of authentication: SQL Server authentication and Windows NT or
Windows 2000 authentication. SQL Server authentication specifies that the named
accounts are valid only in SQL Server. Windows NT or Windows 2000 authentication
signifies that an operating system account is also valid within the database server.

MS SQL Server also supports roles. Roles are special groupings of users to which a
specific privilege is granted. There are three types of roles: fixed server, database, and
user-defined. Fixed server roles span the server and apply to all databases. Database and
user-defined roles pertain to a specific database.

Logins and users: The rules for ArcSDE

Before you create logins and users for ArcSDE, you must understand the requirements
for permissions and database access. Because you can have multiple databases in MS
SQL Server and have different types of authentication, you should ensure that your logins
adhere to these rules to prevent unexpected client behavior when accessing your spatial
data. Remember that a database user is a login that has been granted access to that
database.

1. The ‘sde’ user must have create table, create view, and create procedure within the
‘sde’ database. The sde user must be able to create the metadata tables and stored
procedures that manage an ArcSDE instance. If you are using SQL Server 2000, the sde
user must also have “create function” permission.

2. The ‘sde’ login must be granted access to any other database in which you will store
spatial data.

3. You must add all logins that will access spatial data as users to the sde database and
grant them create table permission. These users must be able to write their logfiles into
the sde database and select against the sde metadata. NOTE: The first time a user
accesses spatial data managed by ArcSDE, they create two logfile tables in the sde
database. As long as these tables are not deleted, it is permissible to revoke their create
table permission because they have created their logfile tables.

4. Any user that will own (create) data in any database through the ArcSDE application
must have create table and create procedure in that database. They must have create table
to create the tables comprising an ArcSDE feature class and create procedure to create
objectid generation stored procedures that accompany a feature class.

5. You must explicitly connect to a database to create data in it, drop a table from it, or
alter a table within it. In other words, DDL statements can only be issued on data if you
have explicitly connected to the database storing that data. If you don’t specify a database
name in your connection string, you connect, by default, to the sde database. We ignore a
login’s default database!

16 ArcSDE Configuration and Tuning Guide for MS SQL Server

6. You can connect to any database and edit data to which you have permissions in any
other database.

7. You should have a separate account for all your application users to reduce contention
against the logfile tables in the sde database. The logfile tables are used to store selection
ID’s in programs such as ArcGIS or ArcView® DBAccess. If you have multiple users
logging into ArcSDE as the same account and then selecting features in their client
programs, they may see unpredictable results or experience performance problems due to
their sharing of a single logfile table.

8. You cannot use a SQL Server reserved word for a login or user name. Examples of
reserved words are Max, National, and Count. See the SQL Server books online (BOL)
for a complete listing.

ArcSDE users rule matrix

User In SDE database In other database

SDE User create table, create view, create procedure,
create function (SQL Server 2000) must be added as a user

Other User create table, create procedure if will own data

add as a user if will access data,

create table and procedure if will own
data

Designing your Security

Setting up your security follows this general process:

1. Creation of logins and assignment of those logins to databases. The logins become
users.

2. Create database roles or use existing roles and add users to them

3. Grant permission to data to those roles.

Security Considerations

MS SQL Server security can be confusing. ArcSDE complicates it by requiring specific
permissions. Here are some suggestions to simplify the process:

1. For simplest administration

a. Use SQL Server authentication only.

b. Do not add the sde login to any specific roles. The sde user must have
create table, procedure, view and function (SQL2k only) in the sde
database and have access to all other spatial databases.

c. Create individual sql server logins and add them to databases. If they need
read permission to all data in a specific database, add them to the
db_datareader role.

2. For tightest security:

a. Configure ArcSDE and SQL Server to use only windows logins

b. Set CROSS_DB_QUERY_FILTER to 1 in SDE_Dbtune table

c. Grant no permissions on data to the “Public” role.

Chapter 2 Configuring SQL Server 17

d. Do not add any login to the db_owner database role.

e. Never save your username and password in an ArcGIS connection file.

f. Use direct connect for ArcIMS connections and input a junk string into the
password field.

3. Avoid any use of fixed server roles unless you are very comfortable with them.

4. Preserve the ‘sde’ login as the system administrator; do not use it for other
operations. Do not add the sde login to the sysadmin fixed server role.

1. Creating a new SQL Server authenticated login for use in ArcSDE

Keep in mind there are multiple ways to do this. SQL Server 7 and 2000 also differ
slightly, but the idea is the same: you must first create or add a new login to the relational
database management system (RDBMS) before you can access data as that login. Each
topic listed below describes the entire process from creating the login to granting it access
to a database or databases, and granting that user privileges within a database.

Enterprise Manager

1. Open the SQL Server Enterprise Manager, expand your server’s branch in the
treeview, expand the “security” node, and select the logins topic.

2. In the details panel on the right, right-click and select “new login.”

18 ArcSDE Configuration and Tuning Guide for MS SQL Server

Select the SQL Server Authentication radio button, name the login, and provide a
password. Assign a default database.

3. Now click the Database Access tab. Scroll through the list of databases and select
the sde database and any other database you want to add this login to as a user.

Chapter 2 Configuring SQL Server 19

4. Click OK and you’ll be prompted to confirm your password. The process both
creates the new login and grants it access to a database or databases (adds that login
as a user to a database).

5. Now expand the databases tree in the treeview and right-click the sde database (or
any other database you’ve added that login to as a user). Select Properties from the
popup menu. In the properties form, select the Permissions tab. You’ll see a grid of
users of this database with columns listing permissions. Check off “create table” and
“create procedure” for a user who will own data in this database. Check off “create
table” for any user in the sde database. Click OK.

Transact SQL

Scripting the creation of your logins and users is much faster than using the Enterprise
Manager. The same rules apply as with the Enterprise Manager. Below is a SQL script
that will demonstrate this idea.

/*
Add sde and non-sde login and user

*/

/*
Step1: Add the logins to the server using
the sp_addlogin stored procedure.
sp_addlogin ‘<login_name>‘,’<pass>‘,’<default_db>‘

*/

use master
go
sp_addlogin ‘sde’,’spatial.data’,’sde’
go
sp_addlogin ‘arthur’,’dent’,’sde’
go

/*
Step2: Grant the login access to the sde database
using sp_grantdbaccess. Grant the user create table
and stored procedure. You must switch to the sde
database to do this.

*/

use sde
go
sp_grantdbaccess ‘sde’
go
sp_grantdbaccess ‘arthur’
go
grant create table to sde
grant create table to arthur
grant create procedure to sde
grant create view to sde
grant create function to sde --SQL Server 2k only!
grant create procedure to arthur
go

Using Windows 2000 or Windows NT logins with ArcSDE

ArcSDE 8.1 for MS SQL Server supports both SQL Server and Windows authentication.

Windows users are parts of domains and groups. You can add individual windows users
SQL Server and connect with them to ArcSDE data stores. There are issues with this
implementation as login names and user names can differ.

20 ArcSDE Configuration and Tuning Guide for MS SQL Server

To use integrated logins with ArcSDE you must:

1. Add the domain user to a group on the ArcSDE server.

2. Add the domain user to the SQL Server as a new login.

3 Grant the new login access to a database.

4 Grant the login appropriate permissions within the database.

You don’t have to perform points 2-4 if your Windows NT user is added to the machine
and is a member of the Windows NT administration group on that machine.

NOTE: Windows NT groups are not supported at ArcSDE 8.1.2 and 8.2.

Using Windows 2000 or NT ‘sde’ login

You can use an integrated ‘sde’ login instead of a SQL Server authenticated sde login.
Keep in mind that the installer will always create a SQL Server ‘sde’ authenticated login.
However, you don’t have to run the postinstaller to set up your sde database.

To use an integrated sde login:

1. Add the domainname\sde login to the SQL Server logins collection.

2. Add the sde login to the sde database (and any other database you intend to use for
spatial data storage) as a user.

3. Grant the sde login create table, view, stored procedure, and function (create
function is necessary in SQL Server 2000 only).

4. Login to Windows as domainname\sde. Open a DOS prompt and switch directories
to %SDEHOME%\bin. Run sdesetupmssql –o install as the sde user. Do not input a
username or password.
sdesetupmssql –o install –s rift –H C:\sde81\sqlexe

5. Or, open a DOS prompt and switch directories to %SDEHOME%\bin. Run
sdesetupmssql –o install as the sde user. Input a null username or password if your
windows account has admin privileges or use the “sa” account.
sdesetupmssql –o install –s rift –H C:\sde81\sqlexe
sdesetupmssql –o install –s rift –H C:\sde81\sqlexe –u sa –p <sa password.

6. Run sdeservice –o create to create an sde service. Specify a null string for your
password –p “” argument. Use the minimum options: -s, -l, -d, -H.
sdeservice –o create –s rift\sql2k –l Fabio –d SQLSERVER –H C:\sde81\sqlexe –i
esri_sde –p “”

7. Start the sdeservice: net start esri_sde, alternatively, make a direct connection to it.

Connecting to an ArcSDE service as a Windows NT login

You can connect to an ArcSDE service without using a username or password with some
ArcSDE clients. The examples below use the administration commands to demonstrate
this functionality.

Sdelayer:

C:\>sdelayer -o describe -i sql82k
ArcSDE 8.1 Build 633 Tue Nov 21 22:30:10 PST 2000
Layer Administration Utility

--
Database : VTEST
Table Owner : VTEST
Table Name : SANDIEGO_NET_JUNCTIONS

Chapter 2 Configuring SQL Server 21

Spatial Column : SHAPE
Layer id : 8
Entities : npc
Layer Type : SDE
I/O Mode : NORMAL
User Privileges : SELECT, UPDATE, INSERT, DELETE
Layer Configuration: DEFAULTS

sdetable:

C:\>sdetable -o create -t authentication_test -d “colA string” -i sql82k

ArcSDE 8.1 Build 633 Tue Nov 21 22:30:10 PST 2000
Attribute Administration Utility

Successfully created table authentication_test.

Sdeimport:

E:\world_sdex>sdeimport -o create -l test,shp -i sql82k -f cntry94

ArcSDE 8.1 Build 633 Tue Nov 21 22:30:10 PST 2000
SDEX File Import Administration Utility

Importing SDEX from cntry94 ...
165 features read.
165 features stored.

ArcCatalog:

NOTE: Using integrated logins (Windows 2000 and NT) in direct connect

If you make a direct connection to ArcSDE using a Windows 2000 or NT user, your
connection login and password will be taken from your operating system login.

22 ArcSDE Configuration and Tuning Guide for MS SQL Server

2. Using roles

Once you have created logins and granted them user access to databases, you should
create roles and assign those users to roles. Add your users to roles based upon
operations they’ll perform. For example:

• Viewers: users that have read-only access to data.

• Editors: users that will edit data in a database.

• Developers: users that will create and deploy applications based upon data in a
database.

There are four types of roles, database, user defined, fixed server, and application.
Application roles are not supported. Database roles are pre-existing, sql server defined
roles. User defined roles are created by an administrator within a database.

Adding a database user to a role simplifies administration by reducing the number of
things you have to do per user. If you define a role that has create table and procedure and
then add all your ArcSDE users to it, you have reduced the number of times you have to
grant a privilege to each one.

Create a User Defined role with sp_addrole or the Enterprise Manager. For example:

sp_addrole ‘Editors’

Will create a user defined role ‘Editors’ owned by the dbo user. You would now add
users to this role with the MS SQL Server Enteprise Manager or the sp_addrolemember
stored procedure:

sp_addrolemember ‘Editors’,’bob’

Using database roles

Database roles are pre-existing roles that carry implicit privileges and permissions.
Public is a database role that all users belong to. Exercise extreme caution when using
database roles as they can produce unexpected side effects. The advantage to using
database roles is that they carry implicit permissions and privileges meaning less work for
you to do.

When to use database roles:

• Db_datareader: To grant select on all tables in a database to a role member.

• Db_ddladmin: Permits a user to run any ddl statement in a database.

• Db_owner: Make a user sysadmin of a database without changing the user
name to “dbo.”

Fixed server roles

Fixed server roles pertain to the server, and hence, all databases. There are two main
things to consider here: if you add a user to the sysadmin fixed server role, anything that
user creates in the database is owned by ‘dbo’ in any database, and you can add a user to
multiple, sometimes conflicting, roles. This last point will assuredly cause problems
when you connect and attempt to view (or load) your data. It is easy to do this, so make
sure you don’t. Figure 2.5 is a screenshot of SQL Server 2000 that shows this. Be careful
you don’t do this!

Chapter 2 Configuring SQL Server 23

Figure 2.3: Adding a login to all fixed server roles—Don’t do this!

3. Grant permission to data to those roles

Once you’ve created logins, added them as users to databases, and added those users to
roles, it is either time to load data, or grant permission on that data to the roles. Chapter 4
covers data loading but before you can load and grant permissions, you must decide who
should own the data, and henceforth do the granting.

Who should own the data?

Designate one user as the owner of all your data. Load all your data as that user and then
grant permissions to that data to roles. The advantage of this system is that your database
will not get cluttered with tables belonging to several different users.

If you load all your data and build ArcGIS complex features, and then add your
dataowner to the sysadmin fixed server role, you may cause problems maintaining those
complex features.

Granting Permission to Simple Features

Use the sdelayer -o grant or -o revoke command to grant or revoke a privilege (SELECT,
INSERT, UPDATE, DELETE) to a role. For example, you have a role called ‘Editors’ in
the sde database. To grant this role SELECT, INSERT, UPDATE, DELETE permissions
against an ArcSDE feature class, ‘county_hiways’ -

sdelayer -o grant -U highways_editors -A SELECT, INSERT, UPDATE, DELETE -l
county_hiways,shape -u county -p big.bob -i esri_sde -s vogon

Granting Permission to Complex Features

24 ArcSDE Configuration and Tuning Guide for MS SQL Server

As complex features are managed by the ArcGIS application, you must use it to grant
permissions to such data to roles or individual users. Right click the feature class or
feature dataset in ArcCatalog and select Privileges. NOTE: A user or role must have
insert, update and delete privilege to make multi-versioned edits.

Managing transaction logs
Transaction logs are composed of a physical log, virtual logs, and a logical log. The
physical log represents the transaction log file or files on disk, while virtual logs are
internal segments of those files. The logical log contains the active portion of the
transaction log.

Transaction logs record transactions, data modifications, extent allocations and
deallocations, and creation/destruction of tables and indexes. This record allows you to:

1. ROLLBACK changes made within a transaction.

2. During recovery, roll back incomplete transactions initiated before a database
failure.

3. During recovery, roll forward modifications listed in the log but not yet written
to disk.

Each record written to the log has a Log Sequence Number (LSN). All new records are
written to the end of the log and have a higher LSN than its predecessor. The logical log
will grow until it consumes all open space in the physical log. This will cause the
physical log to autogrow if allowed or throw an error. If the database uses the simple
recovery model, the logical log will truncate itself when automatic checkpoints occur. If
the database uses the full or bulk-logged recovery model, log truncation will occur after a
BACKUP LOG statement completes.

The logical log cannot truncate itself past the Minimum Log Sequence Number
(MinLSN), usually the oldest uncommitted transaction recorded.

Transaction logs are used to recover a database in the full or bulk-logged recovery
models. The simple recovery model only restores a database to its last backup. If you
require point-in-time recovery of your data, use the full recovery model for your
database. If your data is unchanging, use the simple recovery model. The bulk-logged
recovery model performs minimal logging of certain operations and does not support
point in time recovery.

If you have never made a backup of your databases, you’ll notice that your transaction
logs have grown to considerable size. ArcSDE Transaction logs grow due to data
loading, editing, and making selections into sde_logfiles. When you make selections
with ArcGIS clients such as ArcMap™, all selections exceeding 100 records are written
into a database logfile. The continuous inserting and deleting from this table will make
the database transaction log grow.

Backing up your database and logfile should control the size of the log by truncating it. If
you have not made regular backups of the transaction log, you’ll need to take action to
reduce its size. To reduce the amount of space used within the physical logfile by the
logical log, truncate it. To reduce the overall size of the physical logfile, shrink it.

Truncating transaction logs

Truncating a transaction log refers to the process of removing records from the log that
are no longer necessary for database recovery. These LSNs of these records would
precede the MinLSN of the active portion of the logical log. Truncating the log will not
shrink the size of the physical log.

To truncate your log do one of the following:

Chapter 2 Configuring SQL Server 25

1. Backup the database using either the Enterprise Manager or the Backup statement.

2. Backup the logfile using the Enterprise Manager or the Backup statement.

3. Use the simple recovery model. This model will automatically truncate your
database whenever a checkpoint occurs or when the log fills to 70%.

Once you’ve issued the backup statement, all records preceding the MinLSN are marked
for reuse, and the reported size of the transaction log’s logical log is smaller. The
following figures demonstrate this.

Figure 2.4: A transaction log after registering some very large feature classes with the Geodatabase

Figure 2.5: The same log after a database backup. The log has been truncated.

Shrinking the transaction log

Truncating the log marks all nonactive transactions as reusable but does not reclaim any
space, only delaying any more growth to the physical log file. In the case shown above
in Figure 2.5, the physical log file still consumes 315.8 MB even though only 11.4 MB
are active. You may find that you need some of this extra space. Shrinking the
transaction log will return allocated space to the operating system.

To shrink the transaction log do one of the following:

1. Use the Enterprise Manager’s Shrink database utility: Right-click your database and
select all tasks – Shrink Database. Input your desired resulting free space and click
OK.

2. Use DBCC SHRINKDATABASE.

In the figure below, we used the Enterprise Manager to shrink the logfile to 49.7 MB.

Figure 2.6: The logfile’s new size after shrinking it

26 ArcSDE Configuration and Tuning Guide for MS SQL Server

Help! It won’t shrink!

Under certain circumstances, you will not be able to shrink the size of the logfile. As the
logical log progresses through serial lists of Log Sequence Numbers, the active portion of
the log will arrive at the end of the physical file. You cannot return space preceding the
MinLSN to the operating system. What you must do is advance the MinLSN to the
beginning of the physical file by following this process:

1. Backup the database. This will mark the preceding records to the minimum log
sequence as reusable. Check the size of the log file.

2. Execute some updates using t-sql. This should move the active portion of the log
toward the beginning of the physical file.

3. Execute dbcc shrinkdatabase (dbname) to create a “shrinkpoint.”

4. Backup the log file.

At this point you should see more free space in the logfile. Repeat a few times if
necessary.

27__

CHAPTER 3

Configuring DBTUNE storage
parameters

Each ArcSDE service contains a metadata table, SDE_dbtune, that
contains customization parameters for data loading and access.
SDE_dbtune allows a database administrator to control data placement
onto filegroups, index fillfactor, inlining of binary data, and filtering
feature classes and rasters across database boundaries. This chapter
explains the purpose of SDE_dbtune and the keywords, parameters
and configuration settings it contains.

The SDE_dbtune table

The SDE_dbtune table is created during setup of the ArcSDE software. The ArcSDE
post-installation utilty or the command sdesetupmssql will create it. The SDE_dbtune
table has the following definition.

Column Name Data Type Length Allows Null
keyword varchar 32 no
parameter_name varchar 32 no
config_string varchar 2048 yes

After creating the SDE_dbtune table, the ArcSDE setup populates the table with the
contents of the dbtune.sde file, which is located in the %SDEHOME%etc directory.
If an SDE_dbtune table already exists, the ArcSDE setup may update some of its
contents.

The keyword field stores the keywords that you reference when you load data, build
Geodatabase data models, or store ArcIMS metadata server documents. Within each
keyword, there are a number of parameters, stored in the parameter_name field. Each
parameter has a configuration string associated with it, stored in the config_string
field.

You use the SDE_dbtune table for these purposes:

1. Load tables and indexes onto specific filegroups.
2. Specify an index created as either clustered or non-clustered.
3. Dictate the percentage to which an index page is filled.
4. Determine the amount of binary data to be inlined into data pages.
5. Control cross database query behavior – whether or not to filter feature

classes and rasters at database boundaries.

Chapter 3 Configuring DBTUNE storage parameters 28

For most databases, the defaults listed in the SDE_dbtune table should be acceptable,
except for the CROSS_DB_QUERY_FILTER parameter. This parameter allows
you to prohibit ArcSDE from returning lists of all feature classes and rasters in all
databases that the connecting user has permission to or owns. There should be no
reason to change the default clustering parameters.

How it Works

When you load data, create metadata server tables, or build geodatabase models,
parameters are read from SDE_dbtune and influence the way the data is loaded. There is
a minor exception to this, CROSS_DB_QUERY_FILTER, which is read upon
connection.

Again, the SDE_dbtune table has three columns: keyword, parameter, and config_string.
The keyword column holds values that you reference during data loads. An example
keyword is “DEFAULTS.” The parameter column holds strings that identify a particular
object within a keyword. An example parameter would be
“BLK_INDEX_COMPOSITE.” The config_string column contains a value that is
applied to the object identified by the parameter column. An example config_string
value pertaining to the “BLK_INDEX_COMPOSITE” parameter could be “WITH
FILLFACTOR=95 ON RAS_FG.”

For example, you use the sderaster command to load a raster into an ArcSDE spatial
database but have made some configuration changes that you want to apply to the raster
when it is created. You have added a keyword, RASTERS, to the SDE_dbtune table that
instructs ArcSDE to fill composite index pages of the block table to 95% capacity. You
reference that keyword with the sderaster command’s –k parameter. For example:

sderaster –o import –l ColoFloodPlain,image –g –f cfp0456.tif –k RASTERS …

The RASTERS keyword has a parameter, BLK_INDEX_COMPOSITE, that allows you
to specify how much to fill the index pages of the composite index on the raster’s block
table, and on which filegroup to create this index. For example, the entry in the
SDE_dbtune table might look like this:

Keyword Parameter_name Config_string

RASTERS BLK_INDEX_COMPOSITE WITH FILLFACTOR=95 ON RAS_FG

When you execute the sderaster command above, the loader reads the –k RASTERS

keyword, and when it creates the composite index on the block table, it creates the index
with a fillfactor of 95% on a filegroup called “RAS_FG.” T-SQL data definition
language (DDL) would look like this:

CREATE UNIQUE CLUSTERED
INDEX [SDE_blk_4_pk] ON [dbo].[SDE_blk_4] ([rasterband_id],

[rrd_factor], [row_nbr], [col_nbr])
WITH

FILLFACTOR = 95
ON [RAS_FG]

Parameters will be redundant in this table; each keyword can specify a parameter already
listed under DEFAULTS.

In sum, the simple rules for the SDE_dbtune table are:

1. SDE_dbtune is used to control data placement, index fill factors, index clustering,
binary data inlining, and cross database querying ability.

2. If you don’t specify a keyword when you load data, you use whatever settings
defined under DEFAULTS.

29 ArcSDE Configuration and Tuning Guide for MS SQL

3. If you reference a keyword that does not have full compliment of dbtune keywords,
anything missing defaults to DEFAULTS.

4. You are not required to make any additional edits to SDE_dbtune to make the
software work.

Editing the SDE_dbtune table
Administrators are encouraged to edit the contents of the SDE_dbtune table using the
SQL Server Enterprise Manager or the SQL Server Query Analyzer. The sdedbtune
administration tool has also been provided to enable the export of the contents of this
table to a file. The file can then be edited in a Windows NT file-based editor such as
"WordPad". After updating the file, users can then repopulate the SDE_dbtune table
using the import operation of the sdedbtune command. In the following example the
SDE_dbtune table is exported to the dbtune.out file, the file is edited with Windows
WordPad, and then it is imported after making changes to the file.

C:\>sdedbtune -o export -f dbtune.out -i sql82k -s rhiannon -D sde -u sde
-p go
ArcSDE 8.1 Build 664 Tue Dec 26 22:32:22 PST 2000
Attribute Administration Utility

Successfully exported to file SDEHOME\etc\dbtune.out
C:\>write %sdehome%/etc/dbtune.sde

C:\>sdedbtune -o import -f dbtune.out -i sql82k -s rhiannon -D sde -u sde
-p go
ArcSDE 8.1 Build 664 Tue Dec 26 22:32:22 PST 2000
Attribute Administration Utility

Import SDE_dbtune Table. Are you sure? (Y/N): y

Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file in the etc directory of the
ArcSDE home directory. You cannot relocate the file to another directory with a
qualifying pathname. By not allowing the relocation of the file, the sdedbtune
command ensures that they are located in the ArcSDE software’s etc directory under
the ownership of the ArcSDE administrator.

Understanding the SDE_dbtune keywords

The SDE_dbtune table is grouped by keyword. At ArcSDE 8.2, the following
keywords are included by default:

Select distinct(keyword) from sde.sde_dbtune

DATA_DICTIONARY
DEFAULTS
IMS_METADATA
IMS_METADATARELATIONSHIPS
IMS_METADATATAGS
IMS_METADATATHUMBNAILS
IMS_METADATAUSERS
IMS_METADATAVALUES
IMS_METADATAWORDINDEX
IMS_METADATAWORDS
LOGFILE_DEFAULTS
NETWORK_DEFAULTS
NETWORK_DEFAULTS::DESC

Chapter 3 Configuring DBTUNE storage parameters 30

NETWORK_DEFAULTS::NETWORK

Use of the distinct function in the above query indicates that there are multiple
records per keyword. The defaults keyword, by default, has 50 entries.

DEFAULTS keyword
Whenever you create an object within an ArcSDE database and don’t specify an
SDE_dbtune keyword, the DEFAULTS keyword supplies all data creation
parameters. When you connect to your ArcSDE database, the value of
CROSS_DB_QUERY_FILTER is read to determine whether or not ArcSDE should
allow access to feature classes and rasters in any database or only the presently
connected database. If you customized other keywords, but did not supply all
parameters, missing parameter values will be read from the DEFAULTS keyword
list. By default, the DEFAULTS keyword contains these entries: Select * from
sde.sde_dbtune where keyword = ‘DEFAULTS’

Keyword Parameter config _string

DEFAULTS A_CLUSTER_ROWID 0

DEFAULTS A_CLUSTER_SHAPE 1

DEFAULTS A_CLUSTER_STATEID 0

DEFAULTS A_CLUSTER_USER 0

DEFAULTS A_INDEX_ROWID WITH FILLFACTOR = 75

DEFAULTS A_INDEX_SHAPE WITH FILLFACTOR = 75

DEFAULTS A_INDEX_STATEID WITH FILLFACTOR = 75

DEFAULTS A_INDEX_USER WITH FILLFACTOR = 75

DEFAULTS A_STORAGE

DEFAULTS B_CLUSTER_ROWID 0

DEFAULTS B_CLUSTER_SHAPE 1

DEFAULTS B_CLUSTER_USER 0

DEFAULTS B_INDEX_ROWID WITH FILLFACTOR = 75

DEFAULTS B_INDEX_SHAPE WITH FILLFACTOR = 75

DEFAULTS B_INDEX_USER WITH FILLFACTOR = 75

DEFAULTS B_STORAGE

DEFAULTS B_TEXT_IN_ROW 256

DEFAULTS CROSS_DB_QUERY_FILTER 1

DEFAULTS D_CLUSTER_ALL 0

DEFAULTS D_CLUSTER_DELETED_AT 1

DEFAULTS D_INDEX_ALL WITH FILLFACTOR = 75

DEFAULTS D_INDEX_DELETED_AT WITH FILLFACTOR = 75

DEFAULTS D_STORAGE

DEFAULTS F_CLUSTER_FID 1

DEFAULTS F_INDEX_AREA WITH FILLFACTOR = 75

DEFAULTS F_INDEX_FID WITH FILLFACTOR = 75

DEFAULTS F_INDEX_LEN WITH FILLFACTOR = 75

DEFAULTS F_STORAGE

DEFAULTS F_TEXT_IN_ROW 256

DEFAULTS S_CLUSTER_ALL 1

DEFAULTS S_CLUSTER_SP_FID 0

31 ArcSDE Configuration and Tuning Guide for MS SQL

DEFAULTS S_INDEX_ALL WITH FILLFACTOR = 75

DEFAULTS S_INDEX_SP_FID WITH FILLFACTOR = 75

DEFAULTS S_STORAGE

DEFAULTS UI_TEXT

DATA_DICTIONARY keyword

When the ArcSDE system tables are created during setup, the ArcSDE and
geodatabase system tables and indexes are created with the storage parameters of the
DATA_DICTIONARY keyword. To influence where and how the
DATA_DICTIONARY tables are created, you have two options:

1. Drop any existing ArcSDE system tables (be careful), edit the dbtune.sde file in
%SDEHOME%etc, and then run sdesetupmssql –o install.

2. Create a custom dbtune.sde file, run the ArcSDE Post-Installation utility, and
browse to it during the “ArcSDE configuration files” portion of the setup.

To alter placement of existing tables, use the Enterprise Manager or T-SQL to add
files and filegroups.

If your site makes extensive use of a multiversioned database, consider separating
the MVTABLES_MODIFIED, STATE_LINEAGES, and STATES tables and
indexes into their own filegroups to reduce I/O contention. If the dbtune.sde file does
not contain the DATA_DICTIONARY keyword, or if any of the required parameters
are missing from the keyword, the following records will be inserted into the
DATA_DICTIONARY when the table is created.

Select * from sde.sde_dbtune where keyword = ‘DATA_DICTIONARY’

DATA_DICTIONARY B_CLUSTER_ROWID 0

DATA_DICTIONARY B_CLUSTER_USER 0

DATA_DICTIONARY B_INDEX_ROWID WITH FILLFACTOR = 75

DATA_DICTIONARY B_INDEX_USER WITH FILLFACTOR = 75

DATA_DICTIONARY B_STORAGE

DATA_DICTIONARY MVTABLES_MODIFIED_INDEX WITH FILLFACTOR = 75

DATA_DICTIONARY MVTABLES_MODIFIED_TABLE

DATA_DICTIONARY STATE_LINEAGES_INDEX WITH FILLFACTOR = 75

DATA_DICTIONARY STATE_LINEAGES_TABLE

DATA_DICTIONARY STATES_INDEX WITH FILLFACTOR = 75

DATA_DICTIONARY STATES_TABLE

DATA_DICTIONARY UI_TEXT

DATA_DICTIONARY VERSIONS_INDEX WITH FILLFACTOR = 75

DATA_DICTIONARY VERSIONS_TABLE

LOGFILE keywords

SDE Logfiles are used by ArcSDE to maintain temporary and persistent sets of
selected records. There are two logfile tables per user, SDE_Logfiles and
SDE_Logfile_data. Both tables are created during the first connection a user makes,
or recreated if they have been deleted the next time a user connects.

Chapter 3 Configuring DBTUNE storage parameters 32

You can create keywords for a user’s logfiles by appending the username to they
LOGFILE_<username> keyword. The next time that user connects to an ArcSDE
data store, logfiles will be created according to the parameters and config_strings
specified in that keyword. Missing params will default to LOGFILE_DEFAULTS.

Most installations of ArcSDE will function well using the LOGFILE_DEFAULTS
parameters. However, for applications that make heavy use of logfiles, such as
ArcInfo, ArcEditor™, ArcIMS® MetaData Server, and ArcView, it may help
scalability to spread the logfiles across separate filegroups. ArcGIS clients write
logfiles whenever a selection set exceeds 100 records. Best practice, however,
would be to change the client side Geodatabase registry setting for
SelectionThreshold, boosting it to over 1000 records, first.

LOGFILE_DEFAULTS looks like this:

Select * from sde.sde_dbtune where keyword = ‘LOGFILE_DEFAULTS’

LOGFILE_DEFAULTS LD_CLUSTER_ALL 0

LOGFILE_DEFAULTS LD_CLUSTER_DATA_ID 0

LOGFILE_DEFAULTS LD_CLUSTER_ROWID 1

LOGFILE_DEFAULTS LD_INDEX_ALL WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LD_INDEX_DATA_ID WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LD_INDEX_ROWID WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LD_STORAGE

LOGFILE_DEFAULTS LF_CLUSTER_DATA_ID 0

LOGFILE_DEFAULTS LF_CLUSTER_ID 0

LOGFILE_DEFAULTS LF_CLUSTER_NAME 0

LOGFILE_DEFAULTS LF_INDEX_DATA_ID WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LF_INDEX_ID WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LF_INDEX_NAME WITH FILLFACTOR = 75

LOGFILE_DEFAULTS LF_STORAGE

LOGFILE_DEFAULTS UI_TEXT

IMS_METADATA* Keywords

The IMS METADATA keywords control storage of IMS Metadata Server tables. These
keywords are a standard part of the dbtune table but are only meaningful at ArcSDE 8.2
and beyond. If the keywords are not present in the dbtune file when it is imported into the
SDE_dbtune table, ArcSDE applies software defaults. For more information about
installing IMS Metadata and the associated tables and indexes, refer to ArcIMS Metadata
Server documentation.

IMS_METADATA B_CLUSTER_ROWID 0

IMS_METADATA B_CLUSTER_SHAPE 1

IMS_METADATA B_CLUSTER_USER 0

IMS_METADATA B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATA B_INDEX_SHAPE WITH FILLFACTOR = 75

IMS_METADATA B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATA B_STORAGE

IMS_METADATA B_TEXT_IN_ROW 256

IMS_METADATA F_CLUSTER_FID 1

IMS_METADATA F_INDEX_AREA WITH FILLFACTOR = 75

33 ArcSDE Configuration and Tuning Guide for MS SQL

IMS_METADATA F_INDEX_FID WITH FILLFACTOR = 75

IMS_METADATA F_INDEX_LEN WITH FILLFACTOR = 75

IMS_METADATA F_STORAGE

IMS_METADATA F_TEXT_IN_ROW 256

IMS_METADATA S_CLUSTER_ALL 1

IMS_METADATA S_CLUSTER_SP_FID 0

IMS_METADATA S_INDEX_ALL WITH FILLFACTOR = 75

IMS_METADATA S_INDEX_SP_FID WITH FILLFACTOR = 75

IMS_METADATA S_STORAGE

IMS_METADATA UI_TEXT

IMS_METADATARELATIONSHIPS B_CLUSTER_ROWID 0

IMS_METADATARELATIONSHIPS B_CLUSTER_USER 1

IMS_METADATARELATIONSHIPS B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATARELATIONSHIPS B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATARELATIONSHIPS B_STORAGE

IMS_METADATARELATIONSHIPS UI_TEXT

IMS_METADATATAGS B_CLUSTER_ROWID 1

IMS_METADATATAGS B_CLUSTER_USER 0

IMS_METADATATAGS B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATATAGS B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATATAGS B_STORAGE

IMS_METADATATAGS UI_TEXT

IMS_METADATATHUMBNAILS B_CLUSTER_ROWID 0

IMS_METADATATHUMBNAILS B_CLUSTER_USER 1

IMS_METADATATHUMBNAILS B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATATHUMBNAILS B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATATHUMBNAILS B_STORAGE

IMS_METADATATHUMBNAILS B_TEXT_IN_ROW 256

IMS_METADATATHUMBNAILS UI_TEXT

IMS_METADATAUSERS B_CLUSTER_ROWID 1

IMS_METADATAUSERS B_CLUSTER_USER 0

IMS_METADATAUSERS B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATAUSERS B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATAUSERS B_STORAGE

IMS_METADATAUSERS UI_TEXT

IMS_METADATAVALUES B_CLUSTER_ROWID 0

IMS_METADATAVALUES B_CLUSTER_USER 1

IMS_METADATAVALUES B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATAVALUES B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATAVALUES B_STORAGE

IMS_METADATAVALUES UI_TEXT

IMS_METADATAWORDINDEX B_CLUSTER_ROWID 0

IMS_METADATAWORDINDEX B_CLUSTER_USER 1

IMS_METADATAWORDINDEX B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATAWORDINDEX B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATAWORDINDEX B_STORAGE

IMS_METADATAWORDINDEX UI_TEXT

IMS_METADATAWORDS B_CLUSTER_ROWID 1

Chapter 3 Configuring DBTUNE storage parameters 34

IMS_METADATAWORDS B_CLUSTER_USER 0

IMS_METADATAWORDS B_INDEX_ROWID WITH FILLFACTOR = 75

IMS_METADATAWORDS B_INDEX_USER WITH FILLFACTOR = 75

IMS_METADATAWORDS B_STORAGE

IMS_METADATAWORDS UI_TEXT

The NETWORK_DEFAULTS keyword
The NETWORK_DEFAULTS keyword contains the default parameters for the
ArcGIS network class. If the user does not select a network class composite keyword
from ArcCatalog interface, the ArcGIS network is created with the parameters within
the NETWORK_DEFAULTS keyword. Whenever a network class composite
keyword is selected, its parameters are used to create the feature class, table, and
indexes of the network class. If a network composite keyword is missing any
parameters, ArcGIS substitutes the parameters of the DEFAULTS keyword rather
than the NETWORK_DEFAULTS keyword. So the parameters of the
NETWORK_DEFAULTS keyword are only used in the event that no network
composite keyword is selected. If a NETWORK_DEFAULTS keyword is not
present within a dbtune file that is imported into the SDE_dbtune table, the following
NETWORK_DEFAULTS keyword is created:

NETWORK_DEFAULTS A_CLUSTER_ROWID 0

NETWORK_DEFAULTS A_CLUSTER_SHAPE 1

NETWORK_DEFAULTS A_CLUSTER_STATEID 0

NETWORK_DEFAULTS A_CLUSTER_USER 0

NETWORK_DEFAULTS A_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS A_INDEX_SHAPE WITH FILLFACTOR = 75

NETWORK_DEFAULTS A_INDEX_STATEID WITH FILLFACTOR = 75

NETWORK_DEFAULTS A_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS A_STORAGE

NETWORK_DEFAULTS B_CLUSTER_ROWID 0

NETWORK_DEFAULTS B_CLUSTER_SHAPE 1

NETWORK_DEFAULTS B_CLUSTER_USER 0

NETWORK_DEFAULTS B_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS B_INDEX_SHAPE WITH FILLFACTOR = 75

NETWORK_DEFAULTS B_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS B_STORAGE

NETWORK_DEFAULTS B_TEXT_IN_ROW 256

NETWORK_DEFAULTS D_CLUSTER_ALL 0

NETWORK_DEFAULTS D_CLUSTER_DELETED_AT 1

NETWORK_DEFAULTS D_INDEX_ALL WITH FILLFACTOR = 75

NETWORK_DEFAULTS D_INDEX_DELETED_AT WITH FILLFACTOR = 75

NETWORK_DEFAULTS D_STORAGE

NETWORK_DEFAULTS F_CLUSTER_FID 1

NETWORK_DEFAULTS F_INDEX_AREA WITH FILLFACTOR = 75

NETWORK_DEFAULTS F_INDEX_FID WITH FILLFACTOR = 75

NETWORK_DEFAULTS F_INDEX_LEN WITH FILLFACTOR = 75

NETWORK_DEFAULTS F_STORAGE

NETWORK_DEFAULTS F_TEXT_IN_ROW 256

NETWORK_DEFAULTS S_CLUSTER_ALL 1

35 ArcSDE Configuration and Tuning Guide for MS SQL

NETWORK_DEFAULTS S_CLUSTER_SP_FID 0

NETWORK_DEFAULTS S_INDEX_ALL WITH FILLFACTOR = 75

NETWORK_DEFAULTS S_INDEX_SP_FID WITH FILLFACTOR = 75

NETWORK_DEFAULTS S_STORAGE

Network class composite keywords
The composite keyword is a unique type of keyword designed to accommodate the
tables of the ArcGIS network class. The network table’s size variation requires a
keyword that provides configuration parameters for both large and small tables.
Typically, the network descriptions table is very large in comparison with the others.
To accommodate the vast difference in size of the network tables, the network
composite keyword is subdivided into elements. A network composite keyword has
three elements: the parent element defines the general characteristic of the keyword
and the junctions feature class, the description element defines the configuration of
the DESCRIPTIONS table and its indexes, and the network element defines the
configuration of the remaining network tables and their indexes. The parent element
does not have a suffix, and its keyword looks like any other keyword. The
description element is demarcated by the addition of the ::DESC suffix to the parent
element’s keyword, and the network element is demarcated by the addition of the
::NETWORK suffix to the parent element’s keyword.

NETWORK_DEFAULTS::DESC A_CLUSTER_ROWID 1

NETWORK_DEFAULTS::DESC A_CLUSTER_STATEID 0

NETWORK_DEFAULTS::DESC A_CLUSTER_USER 0

NETWORK_DEFAULTS::DESC A_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC A_INDEX_STATEID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC A_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC A_STORAGE

NETWORK_DEFAULTS::DESC B_CLUSTER_ROWID 1

NETWORK_DEFAULTS::DESC B_CLUSTER_USER 0

NETWORK_DEFAULTS::DESC B_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC B_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC B_STORAGE

NETWORK_DEFAULTS::DESC B_TEXT_IN_ROW 256

NETWORK_DEFAULTS::DESC D_CLUSTER_ALL 0

NETWORK_DEFAULTS::DESC D_CLUSTER_DELETED_AT 1

NETWORK_DEFAULTS::DESC D_INDEX_ALL WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC D_INDEX_DELETED_AT WITH FILLFACTOR = 75

NETWORK_DEFAULTS::DESC D_STORAGE

NETWORK_DEFAULTS::NETWORKA_CLUSTER_ROWID 1

NETWORK_DEFAULTS::NETWORKA_CLUSTER_STATEID 0

NETWORK_DEFAULTS::NETWORKA_CLUSTER_USER 0

NETWORK_DEFAULTS::NETWORKA_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKA_INDEX_STATEID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKA_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKA_STORAGE

NETWORK_DEFAULTS::NETWORKB_CLUSTER_ROWID 1

NETWORK_DEFAULTS::NETWORKB_CLUSTER_USER 0

NETWORK_DEFAULTS::NETWORKB_INDEX_ROWID WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKB_INDEX_USER WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKB_STORAGE

Chapter 3 Configuring DBTUNE storage parameters 36

NETWORK_DEFAULTS::NETWORKB_TEXT_IN_ROW 256

NETWORK_DEFAULTS::NETWORKD_CLUSTER_ALL 0

NETWORK_DEFAULTS::NETWORKD_CLUSTER_DELETED_AT 1

NETWORK_DEFAULTS::NETWORKD_INDEX_ALL WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKD_INDEX_DELETED_AT WITH FILLFACTOR = 75

NETWORK_DEFAULTS::NETWORKD_STORAGE

Parameters and Config_Strings
The previous section listed the default keywords but did not explain parameters and their
config_strings. Parameters and config_strings are used by ArcSDE to identify how
something is created with regard to:

1. Where it is created (filegroup).

2. Whether or not to cluster an index.

3. How much to fill each index page (FILLFACTOR).

4. How much binary data should be stored inline to a data page.

5. Whether to allow for cross database query support.

Parameters identify the thing to be created while config_strings identify how it should be
created. Parameters and config_strings fall generally into these categories:

Parameter_name Config_string Parameter Example Config_String
Example

Cluster an index 1 = yes; 0 = no A_CLUSTER_SHAPE 1

Index storage and fillfactor WITH
FILLFACTOR=75
ON
<FILEGROUP>

A_INDEX_SHAPE WITH
FILLFACTOR
= 75 ON
mv_Fg

Table storage ON
<FILEGROUP>

A_STORAGE ON mv_Fg

*_TEXT_IN_ROW Inline up to 256
(default) bytes in
the data page

F_TEXT_IN_ROW 256

CROSS_DB_QUERY_FILTER 1 = Yes; 0 = no CROSS_DB_QUERY_FILTER 0

UI_TEXT Descriptive Text
to appear in a UI

UI_TEXT Rasters

COMMENT Descriptive Text COMMENT Raster Info

Table and Index Parameters and Config_strings

You’ll notice from the above tables that both parameters and config_strings will repeat
themselves. Here’s a list of exactly what they mean:

37 ArcSDE Configuration and Tuning Guide for MS SQL

Adds Table (Multi-version table) Parameters

An “Adds table” is a multi-versioned table that stores edits made against a feature class in
a multi-versioned database. It is almost identical in structure to the business table but has
additional columns to track state ids.

Parameter_name Config_string Note

A_CLUSTER_ROWID 0
Adds table (multi-versioned data) rowid
index created as non-clustered

A_CLUSTER_SHAPE 1
Adds table spatial col (shape col)
created as clustered

A_CLUSTER_STATEID 0
Adds table stateid index created as non-
clustered

A_CLUSTER_USER 0
Adds table user defined index (if exists)
created as non-clustered

A_INDEX_ROWID WITH FILLFACTOR = 75

Fill the index pages for rowid index to
75%; add an on <filegroup> to reference
a filegroup; with fillfactor=75 on ras_fg

A_INDEX_SHAPE WITH FILLFACTOR = 75 Fill the shape index pages to 75%

A_INDEX_STATEID WITH FILLFACTOR = 75 Fill the stateid index pages to 75%

A_INDEX_USER WITH FILLFACTOR = 75

Fill any user defined indexes to 75%;
User defined means ArcSDE didn’t
create them by default

A_STORAGE
Specify a filegroup with on <fg>; on
ras_fg

Business Table Parameters

The business table is the attribute table of a layer or feature class. It contains attribute
information in addition to a spatial column (of type int) used to join to the feature table.

Parameter_name Config_String Note

B_CLUSTER_ROWID 0
Create the rowid index as clustered or
not (1=cluster, 0=non-clustered)

B_CLUSTER_SHAPE 1
Create the spatial column index as
clustered or not.

B_CLUSTER_USER 0
Create a user defined index as clustered
or non-clustered.

B_INDEX_ROWID WITH FILLFACTOR = 75

Fill rowid index pages to 75%; append
‘ON <filegroup name>’ to reference a
filegroup: with fillfactor=75 on ras_fg

B_INDEX_SHAPE WITH FILLFACTOR = 75

Fill shape index pages to 75%; append
‘on <filegroup name>’ to reference a
filegroup.

B_INDEX_USER WITH FILLFACTOR = 75 Fill a user defined index page to 75%

B_TEXT_IN_ROW 256

In-line up to 256 bytes directly into the
data page instead of building image
pages.

B_STORAGE
Specify a filegroup with ON <filegroup
name>: ON RAS_FG

Deletes Table Parameters

The deletes table is used in conjunction to track modifications against multi-versioned
tables.

Parameter_name Config_string Note

D_CLUSTER_ALL 0

Create the composite index as clustered
or non-clustered. (0=non-clustered;
1=clustered)

D_CLUSTER_DELETED_AT 1

Create the deleted_at column index as
clustered or not. (0=non-clustered;
1=clustered)

Chapter 3 Configuring DBTUNE storage parameters 38

D_INDEX_ALL WITH FILLFACTOR = 75

Fill composite index pages to 75%;
append ‘ON <filegroup name>’ to
reference a filegroup: with fillfactor=75
on ras_fg

D_INDEX_DELETED_AT WITH FILLFACTOR = 75

Fill deleted_at index pages to 75%;
append ‘ON <filegroup name>’ to
reference a filegroup: with fillfactor=75
on ras_fg

D_STORAGE
Specify a filegroup with ON <filegroup
name>: ON ras_fg

Feature Table Parameters

The feature table stores each shape’s extent and geometry. It will also contain records
from multi-versioned inserts and updates.

Parameter_name Config_string Note

F_CLUSTER_FID 1
Create the fid column index as clustered
(1=yes, 0=no)

F_INDEX_AREA WITH FILLFACTOR = 75
Fill the area index pages to 75%; append ON
<filegroup name> to reference a filegroup

F_INDEX_FID WITH FILLFACTOR = 75
Fill the FID index pages to 75%; append ON
<filegroup name> to reference a filegroup

F_INDEX_LEN WITH FILLFACTOR = 75
Fill the len index pages to 75%; append ON
<filegroup name> to reference a filegroup

F_STORAGE
Specify a filegroup with on <filegroup>; ON
RAS_FG

F_TEXT_IN_ROW 256
Store up to 256 bytes of binary data in the data
page

Spatial Index Table Parameters

The spatial index is a grid that overlays features and is used to identify features to fetch.
The bounding box of spatial query is overlaid against the spatial index table to select
candidate shapes satisfying the query.

Parameter_name Config_string Note

S_CLUSTER_ALL 1
Create the composite index as clustered
(1=yes;0=no).

S_CLUSTER_SP_FID 0
Create the sp_fid index as non-clustered
(1=yes;0=no).

S_INDEX_ALL WITH FILLFACTOR = 75

Fill the composite index pages to 75%;
append ON <filegroup name> to reference
a filegroup

S_INDEX_SP_FID WITH FILLFACTOR = 75

Fill the sp_fid index pages to 75%; append
ON <filegroup name> to reference a
filegroup

S_STORAGE
Specify a filegroup with on <filegroup>; ON
RAS_FG

Data Dictionary Parameters

These parameters govern how the ArcSDE metadata tables will be created. They also
allow for data separation strategries.

Parameter_name Config_string Note

B_CLUSTER_ROWID 0

Create rowid index as non-
clustered on data dictionary
tables

B_CLUSTER_USER 0

Create a user defined index as
non-clustered on data dictionary
tables

39 ArcSDE Configuration and Tuning Guide for MS SQL

B_INDEX_ROWID WITH FILLFACTOR = 75

Fill rowid index pages to 75%;
append ON <filegroup name> to
reference a filegroup

B_INDEX_USER WITH FILLFACTOR = 75

Fill user defined index pages to
75%; append ON <filegroup
name> to reference a filegroup

B_STORAGE

Identify a filegroup for data
dictionary b-tables; ON
<filegroup name>

MVTABLES_MODIFIED_INDEX WITH FILLFACTOR = 75

Fill factor for mvtables_modified
table; append ON <filegroup
name> to reference a filegroup

MVTABLES_MODIFIED_TABLE

Identify a filegroup for
mvtables_modified; ON
<filegroup name>

STATE_LINEAGES_INDEX WITH FILLFACTOR = 75

Fill factor for state_lineages
index; append ON <filegroup
name> to reference a filegroup

STATE_LINEAGES_TABLE

Identify a filegroup for
state_lineages table; ON
<filegroup name>

STATES_INDEX WITH FILLFACTOR = 75

Fill factor for state_lineages
index; append ON <filegroup
name> to reference a filegroup

STATES_TABLE

Identify a filegroup for
state_lineages table; ON
<filegroup name>

VERSIONS_INDEX WITH FILLFACTOR = 75

Fill factor for state_lineages
index; append ON <filegroup
name> to reference a filegroup

VERSIONS_TABLE

Identify a filegroup for
state_lineages table; ON
<filegroup name>

Logfile Tables Parameters

As described previously, the sde_logfile and sde_logfile_data tables hold selected sets of
records.

Parameter_name Config_string Note

LD_CLUSTER_ALL 0

Create the composite index on the
Logfile_data table as clustered
(0=no;1=yes)

LD_CLUSTER_DATA_ID 0

Create the data_id index on the
Logfile_data table as clustered
(0=no;1=yes)

LD_CLUSTER_ROWID 1

Create the rowid index on the
Logfile_data table as clustered
(0=no;1=yes)

LD_INDEX_ALL WITH FILLFACTOR = 75

Fillfactor for composite index; append
ON <filegroup name> to reference a
filegroup

LD_INDEX_DATA_ID WITH FILLFACTOR = 75

Fillfactor for data_id index; append ON
<filegroup name> to reference a
filegroup

LD_INDEX_ROWID WITH FILLFACTOR = 75

Fillfactor for rowid index; append ON
<filegroup name> to reference a
filegroup

LD_STORAGE
Identify a filegroup for data with: ON
<filegroup name>

LF_CLUSTER_DATA_ID 0
Create the logfile_data table’s data_id
index as clustered (1=yes;0=no)

LF_CLUSTER_ID 0
Create the logfile_data table’s id index
as clustered (1=yes;0=no)

LF_CLUSTER_NAME 0
Create the logfile_data table’s name
index as clustered (1=yes; 0=no)

Chapter 3 Configuring DBTUNE storage parameters 40

LF_INDEX_DATA_ID WITH FILLFACTOR = 75

Fillfactor for data_id index on Logfile
table; append ON <filegroup name> to
load onto a filegroup

LF_INDEX_ID WITH FILLFACTOR = 75

Fillfactor for id index on Logfile table;
append ON <filegroup name> to load
onto a filegroup

LF_INDEX_NAME WITH FILLFACTOR = 75

Fillfactor for name index on logfile table;
append ON <filegroup name> to load
onto a filegroup

LF_STORAGE
Identify a filegroup to hold the Logfile
table with ON <filegroup name>

IMS_METADATA* and NETWORK_DEFAULTS* parameters

The parameters for these keywords work much in the same way as the parameters and
config_strings of a regular layer or business table in that you can customize the index
fillfactors of business, feature, and spatial index tables. You should not change the
clustering parameters. You can edit the config_strings to identify filegroups and different
fillfactors.

Raster table parameters

Rasters in ArcSDE are stored as 5 separate tables. Of these tables, only one will get big,
the BLK tables. Set the BND_CLUSTER_COMPOSITE config_string to 1.

Parameter_name Config_string Note

AUX_CLUSTER_COMPOSITE 1
Create a clustered index on
the AUX table

AUX_INDEX_COMPOSITE WITH FILLFACTOR = 75

Fill the AUX table’s composite
index pages to 75%;
reference a filegroup with ON
ras_fg

AUX_STORAGE
Specify a filegroup to store
this table; ON ras_fg

BLK_CLUSTER_COMPOSITE 1
Create a clustered index on
the BLK table

BLK_INDEX_COMPOSITE WITH FILLFACTOR = 75

Fill the BLK table’s composite
index pages to 75%;
reference a filegroup with ON
ras_fg

BLK_TEXT_IN_ROW 256

Store up to 256 bytes in the
data page as opposed to
traditional image pages.

BLK_STORAGE
Specify a filegroup to store
this table; ON ras_fg

BND_CLUSTER_COMPOSITE 0
Create a clustered index on
the BND table

BND_CLUSTER_ID 0
Create a clustered index on
the BND table’s id column

BND_INDEX_COMPOSITE WITH FILLFACTOR = 75

Fill the BLK table’s composite
index pages to 75%;
reference a filegroup with ON
ras_fg

BND_INDEX_ID WITH FILLFACTOR = 75

Fill the BLK table’s id index
pages to 75%; reference a
filegroup with ON ras_fg

BND_STORAGE
Specify a filegroup to store
this table; ON ras_fg

RAS_CLUSTER_ID 1
Create a clustered index on
the RAS table’s id column

RAS_INDEX_ID WITH FILLFACTOR = 75

Fill the RAS table’s id index
pages to 75%; reference a
filegroup with ON ras_fg

RAS_STORAGE
Specify a filegroup to store
this table; ON ras_fg

41 ArcSDE Configuration and Tuning Guide for MS SQL

UI_TEXT Parameters

Any parameters listed as “UI_TEXT” represent dbtune keywords visible to GUIs. Tools
like the Network Builder in Arccatalog expose dbtune keywords for data loading and
modeling operations.

Text in row
SQL Server 2000 supports the ability to store image, text and ntext values directly in
a data row. Previous versions of SQL Server would store the images types in image
data pages. The advantage of “inlining” or storing some image types in a data row is
that you may speed fetching of your data since queries will traverse fewer pages to
find your data. ArcSDE uses an image type column to store its geometry.

The SQL Server and ArcSDE default of for text in row is 256 bytes, but can span
from 72 to 7000 bytes. Be forwarned that the more image data you store in a row,
the larger your table will become, thus eventually slowing down your queries as
more pages must be traversed. Larger raster data should not be stored in row. Points
do not need to be stored in row as spatial queries against them reconstruct the
features from their envelopes instead of reading from the image type.

To enable a table or feature class to store its geometry, rasters, regular images, text
or ntext “in row” reference a keyword containing the appropriate text in row values:

Keyword Parameter_name Config_string

DEFAULTS B_TEXT_IN_ROW 256

DEFAULTS F_TEXT_IN_ROW 256

IMS_METADATA B_TEXT_IN_ROW 256

IMS_METADATA F_TEXT_IN_ROW 256

IMS_METADATATHUMBNAILS B_TEXT_IN_ROW 256

NETWORK_DEFAULTS B_TEXT_IN_ROW 256

NETWORK_DEFAULTS F_TEXT_IN_ROW 256

NETWORK_DEFAULTS::DESC B_TEXT_IN_ROW 256

NETWORK_DEFAULTS::NETWORK B_TEXT_IN_ROW 256

Picking a text_in_row size
Try to inline up to 80% of your vector data. You can ascertain this size by running
this query:

select top 20 percent(datalength(points)) from boris.f12 order by
datalength(points) desc

Pick the smallest value from this result set. Generally, the default value (256) is
good enough.

Raster data is usually much larger. If you attempt to inline too much, you’ll end up
creating too many extents and data pages. Generally, the default value(256) should
suffice.

Fill factor parameters

The “WITH FILLFACTOR = 75” parameter specifies how full each page in the leaf
level of an index should be. SQL Server uses a default value of 0, which means that
the leaf pages of an index are almost full but that the nonleaf pages have room for at

Chapter 3 Configuring DBTUNE storage parameters 42

least two more rows. If the fillfactor is 100, all pages are completely full. With a fill
factor of 75, each clustered index page starts 75 percent full. Subsequent inserts and
updates to that data add to the index page. When the page hits 100%, it is full. Any
subsequent insert or update to data in that page will split the page.

Use FILLFACTOR to balance full index pages and page splits. When a page is split,
SQL Server moves approximately 50% of the data in the split page to a new page,
most likely allocated from a different extent. Page splits will fragment your tables,
thus compromising performance. Setting Fillfactor too low results in too many data
pages, meaning too many extents to traverse in a query, thus negatively impacting
performance.

Decision Criteria for choosing a FILLFACTOR
1. Is your data read-only? Will it never be edited? If so, set all FILLFACTORS

on your data to 100.
2. Will your data be updated frequently? If so, stay with the defaults.
3. Will your data incur sporadic updates? If so, boost FILLFACTOR to 85-95%.

Clustered Indexes and their Tables

Clustered indexes store tabular data at their leaf nodes. The data pages at the
clustered index leaf level derive their order from the clustered index key value. This
has one important consequence with regard to the SDE_dbtune table: You cannot
separate a table from its clustered index.

For example, you specify that a feature table’s fid index be created on the FeatIdx
filegroup while the feature table should be stored on the Feat filegroup. The fid
index is created as clustered. SDE_dbtune might look like this:

Keyword Parameter_name Config_string
DEFAULTS F_INDEX_FID WITH FILLFACTOR=90 ON FEATIDX
DEFAULTS F_STORAGE ON FEAT

In this case, both the feature table and feature table’s reside on the FeatIdx filegroup. The
feature table is created first, then a primary key constraint is applied to the FID column.
The constraint creates a clustered index on the fid column and references the FEATIDX
filegroup in this statement:

Alter Table features.dbo.f4 add constraint f4_pk primary key clustered
(fid) with fillfactor=75 on FEATIDX

Another case would be if you were to specify a filegroup for the feature table but not for
the feature table’s index.

Keyword Parameter_name Config_string
DEFAULTS F_INDEX_FID WITH FILLFACTOR=90
DEFAULTS F_STORAGE ON FEAT

In this case, both the feature table and clustered index on the fid column will reside on the
Feat filegroup. This occurs because the table is created first and when the alter table
statement is applied, no ON statement is appended because no such string is listed in the
config_string column above.

Alter table features.dbo.f5 add constraint f5_pk primary key clustered
(fid) with FILLFACTOR=75

Raster data is slightly different. If you attempt to specify different filegroups for the
raster block table and the raster block tables primary key, your data load will fail.

43 ArcSDE Configuration and Tuning Guide for MS SQL

44

CHAPTER 4

Managing tables, feature
classes, rasters, and views

A fundamental part of any database is creating and loading the tables.

Tables with spatial columns are called standalone feature classes.

Attribute only (nonspatial) tables are also an important part of any

database. This chapter will describe the table and feature creation and

loading process and provide some examples demonstrating how to

populate your ArcSDE database.

Setting up the dbtune table
Previous versions of ArcSDE and Spatial Database Engine™ (SDE®) used the
dbtune.sde file to identify data spaces for your data. Loading your data onto specified
data spaces allows you to distribute I/O in multiuser configurations. The basic idea is to
spread your data and indexes across many disks so that disk spindles can find it. Placing
all data in one location on a single disk will create a “hotspot.” A hotspot is a location on
a disk of frequently accessed data by multiple readers or writers.

ArcSDE 8.1 pushes the dbtune file into a database table. This allows for all types of
connections, three-tier or two-tier, to access the information. Dbtune tables are composed
of keywords, parameters, and configuration parameters. Keywords identify specific
loading parameters. Parameters represent ArcSDE objects such as tables and indexes.
Configuration parameters specify how something should be loaded.

For further information on the dbtune table, see Chapter 3, ‘Configuring DBTUNE
storage parameters’.

Data creation
There are numerous applications that can create and load data within an ArcSDE SQL
Server database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

• sdelayer manages feature classes including creating a schema

• sdetable manages tables including creating a schema

• sdeimport takes an existing sdeexport file and loads the data into the database

• shp2sde loads an ESRI® shapefile into the database

• cov2sde loads a coverage, Map LIBRARIAN™ layer, or ArcStorm™ layer
into the database

Chapter 4 Managing tables, feature classes, rasters, and views 45

• tbl2sde loads an attribute-only dBASE or INFO file into the database

• sdegroup—a specialty feature class creation command that provides a way to
“group” or tile features from an existing feature class into another feature class
that displays background or reference data. The generated feature classes are
used for rapid display of a large amount of geometry data. The attribute
information is not retained, and spatial searches cannot be performed on these
feature classes.

These are all run from the operating system prompt. Command references for these tools are
in the ArcSDE developer help.

Other applications include:

ArcGIS Desktop—use ArcCatalog or ArcToolbox™ to manage and populate your
database.

ArcInfo Workstation—use the Defined Layer interface to create and populate the
database.

ArcView GIS 3.2—use the Database Access extension.

MapObjects®—custom COM applications can be built to create and populate databases.

ArcSDE CAD Client extension—for AutoCAD and MicroStation users.

Other third party applications built with either C or Java APIs.

This document focuses primarily on the ArcSDE administration tools but does provide
some ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use
graphic user interface like the one found in ArcGIS 8.1 Desktop. For details on how to
use ArcCatalog or ArcToolbox (another desktop data loading tool), please refer to the
ArcGIS 8.1 books:

Know your data

Before you begin loading your data, get to know it. SQL Server 2000 has approximately
174 reserved words and 135 future keywords, words that may be listed as reserved in
future releases. The use of reserved words for table and column names is not supported.
See the SQL Server Books Online for more information.

The use of nonstandard identifiers is also unsupported. Such an identifier could be
naming a table “3d.” You cannot begin an ArcSDE tablename with a number. Nor can
you use pound signs or symbols. The maximum length of an ArcSDE table is
32 characters.

Watch the length and naming of your columns as well. Do not employ column names
with spaces in them. Long column names can also cause problems if they exceed the
SQL Server accepted range. Finally, be aware of your data ranges, especially with date
data types. SQL Server cannot accept datetime values preceding January 1, 1753. If you
attempt to load a table into SQL Server through ArcSDE with values preceding this
range, the load will fail.

Creating and populating a feature class

The general process involved with creating and loading a feature class is:

1. Create the business table.

2. Add the feature class to the ArcSDE system tables.

46 ArcSDE Configuration and Tuning Guide for MS SQL Server

3. Switch the feature class to load_only_io mode (optional step to improve bulk data
loading performance. It is OK to leave the feature class in normal_io mode to load
data.).

4. Insert the records (load data).

5. Switch the feature class to normal_io mode (builds the indexes).

6. Version the data (optional).

7. Grant permissions on the data (optional).

In the following sections, this process is discussed in more detail and illustrated with
some examples of ArcSDE administration commands usage and ArcInfo data-loading
utilities through the ArcCatalog and ArcToolbox interfaces.

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from
scratch (generally regarded as more effort), or you can create a feature class from existing
data such as a coverage or ESRI shapefile. Both methods are reviewed below with the
“from scratch” method being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or with
the ArcSDE sdetable command. The sdetable command allows you to include a dbtune
configuration keyword which contains the storage parameters of the table.

Although the table may be up to 256 columns, ArcSDE requires that only one of those
columns be defined as a spatial column.

In this example, the sdetable command is used to create the ‘roads’ business table.

sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the dbtune configuration keyword (-k) ‘roads’ by user beetle.

The same table could be created with a SQL CREATE TABLE statement using the SQL
Server Query Analyzer.

create table roads
(road_id integer,
name varchar(32),
shape integer)
on beetle_data

At this point you have created a table in the database. ArcSDE does not yet recognize it
as a feature class. The next step is to add a feature class.

Adding a feature class

After creating a business table, you must add an entry for it in the ArcSDE system tables
before the ArcSDE server can reference it. Use the sdelayer command with the “-o add”
operation to add the new feature class. This will add a spatial column, update the ArcSDE
SDE_layers and SDE_geometry_columns tables, and add the required system table
entries.

In the following example, the roads feature class is added to the ArcSDE database. Note
that to add the feature class, the roads table name and the shape spatial column are
combined to form a unique feature class reference. To understand the –e, –g, and –x
options, refer to the sdelayer command reference in the ArcSDE developer help.

sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p
bug -k roads

Chapter 4 Managing tables, feature classes, rasters, and views 47

If the spatial column of the feature class is stored in either LONG RAW or BLOB
compressed binary format, the feature and spatial index tables are created at this time.
The feature class tables and indexes are stored according to the storage parameters of the
roads configuration keywords in the DBTUNE table. Upon successful completion of the
previous sdetable command—to create a table—and the sdelayer command—to add the
feature class to the ArcSDE system tables—you have an empty feature class in normal_io
mode.

Switching to load-only mode

Switching the feature class to load-only mode drops the spatial index and makes the
feature class unavailable to ArcSDE clients. Bulk loading data into the feature class in
this state is much faster due to the elimination of index maintenance. Use the sdelayer
command to switch the feature class to load-only mode by specifying the “-o
load_only_io” operation.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode. However, the grid size can be altered with the -o alter operation. The alter
operation will apply an exclusive lock on the feature class, preventing all modifications
by ArcInfo until the operation is complete.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are
several ways to insert data into a feature class, but probably the easiest method is to
convert an existing shapefile or coverage or import a previously exported ArcSDE
sdeexport file directly into the feature class. A more “from scratch” method would be to
add the data with an editor such as ArcMap.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to
“overwrite” data that’s already there. Be careful when using the init operation on feature
classes that already have data loaded in them. Here, the shapefile, “rdshp”, will be
loaded into the feature class, “roads”. Note that the name of the spatial column (shape in
this case) is included in the feature class (-l) argument.

shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, we can also use the cov2sde command:

cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal_io mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients.
For example:

sdelayer -o normal_io -l roads,shape -u beetle -p bug

Now your feature class is ready for use by ArcSDE client applications.

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process
that allows for multiple representations of your data without requiring duplication or
copies of the data. ArcMap requires data to be multiversion enabled in order to edit it.
For further information on versioning data, refer to the Building a Geodatabase book.

In this example, the feature class called ‘states’ will be registered as multiversioned using
the sdetable alter_reg operation.

48 ArcSDE Configuration and Tuning Guide for MS SQL Server

sdelayer -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Granting permissions on the data

Once you have the data loaded, it is often necessary for other users to have access to the
data for update, query, insert, or delete operations. Initially, only the user who has
created the business table has access to it. In order to make the data available to others,
the owner of the data must grant permissions to other users. The owner can use the
sdelayer command to grant permissions. Privileges can be granted to either another user
or to a role.

In this example, a user called “beetle” gives a user called “spider” SELECT privileges on
a feature class called ‘states’.

sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are:

SELECT. The user may query the selected object(s) data.

DELETE. The user may delete the selected object(s) data.

UPDATE. The user may modify the selected object(s) data.

INSERT. The user may add new data to the selected object(s) data.

If you include the -I grant option, you also grant the recipient the privilege of granting
other users and roles the same privilege.

Creating and loading feature classes from existing data (recommended
method)

This next section reviews how to create feature classes from existing data. This method
is simpler since the creation and load process is completed at once.

Creating new feature classes and loading data all in one step

Each of the ArcSDE administration commands, shp2sde,cov2sde, and sdeimport,
includes an “-o create” operation, which allows you to create a new feature class within
the ArcSDE database. The create operation does all of the following:

• Creates the business table using the input data as the template for the schema

• Adds the feature class to the ArcSDE system tables

• Puts the feature class into load-only mode

• Inserts data into the feature class

• When all the records are inserted, puts the feature class into normal_io mode

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatial
column definition is read directly from the shapefile. You can use the shpinfo command
to display the shapefile column definitions. In this example, the –k roadsys switch
identifies a dbtune parameter.

shp2sde -o create -f rdshp -l roads,shape -k roadsys -u beetle -p bug

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table.

Chapter 4 Managing tables, feature classes, rasters, and views 49

Use the ArcInfo describe command to display the ArcInfo data source column
definitions.

In this example, an ArcStorm library, “roadlib”, is converted into the feature class,
“roads”.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100
-e l+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In
this example, the roadexp ArcSDE export file is converted into the feature class ‘roads’.

sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and modify the permissions of the feature class.

Appending data to an existing feature class

A common requirement for data management is to be able to append data to existing
feature classes. All the data loading commands described thus far have a –o append
operation for appending data. A feature class must exist prior to using the append
operation. If the feature class is multiversioned, it must be in an “open” state. It is also
advisable to change the feature class to load-only I/O mode and pause the spatial
indexing operations before loading the data to improve the data loading performance. The
spatial indexes will be re-created when the feature class is put back into normal I/O
mode. Because the feature class has already been defined, the metadata already exists and
is not altered by the append operation.

In the shp2sde example below, a previously created ‘roads’ feature class gets appended
features from a shapefile, “rdshp2.” All existing features, loaded from the rdshp
shapefile, will remain intact, and the feature class will simply be updated with the new
features from the rdshp2 shapefile.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The update_dbms_stats operation on sdetable
updates the table and index statistics.

Creating and populating raster tables
Raster columns are created from the ArcGIS Desktop using ArcCatalog or ArcMap. To
create a raster column, you will first need to convert the image file into a format
acceptable to ArcSDE . Then after the image has been converted to the ESRI raster file
format, you can convert it into a raster column.

For more information on creating raster columns using either ArcCatalog or
ArcToolbox, refer to Building a Geodatabase. ArcCatalog and ArcToolbox have a raster
to Geodatabase loader for loading rasters into ArcSDE.

Consult Chapter 3 ‘Configuring DBTUNE storage parameters,’ for dbtune specific
parameters for loading rasters. ArcSDE 8.1 for SQL Server 2000 supports a text_in_row
option for raster columns: blk_text_in_row.

50 ArcSDE Configuration and Tuning Guide for MS SQL Server

Creating a Raster Image Catalog

An Image Catalog allows you to group many images by simply listing them in a table.
ArcGIS clients such as ArcCatalog or ArcMap display the images as a group by reading
the entries in the table. The table must contain five columns: Image, xmin, ymin, xmax,
and ymax. The Image column contains a fully qualified image name, and the remaining
four describe the extent of each image. The table does not have to be registered with
either ArcSDE or the Geodatabase and does not have to be multiversioned. Here’s an
example:

Image xmin ymin xmax ymax
sde.DBO.A106 322169.2 4094888 411902.3 4151957
sde.DBO.E106 323452.5 4150579 412586.2 4207658
sde.DBO.A107 233002.1 4096472 323537.9 4154628
sde.DBO.E107 234912.9 4151847 324666.3 4210094
sde.DBO.A108 676712.7 4090675 770814.6 4154551
sde.DBO.E108 675530.7 4146368 769195.7 4210173
sde.DBO.A106_8 324599.5 4206098 413235.3 4263136
sde.DBO.E106_8 325340.9 4261470 413692.2 4318609
sde.DBO.A107_8 236598.8 4207336 325702 4265705
sde.DBO.E107_8 239302.9 4262352 327095.4 4321168
sde.DBO.A105_9 413273.8 4316886 500802.2 4372878

If you have less than nine images, then all the images will display. If you have more,
your images will not display until you begin to zoom in.

Exporting data
As with importing data, there are also client applications that export data from ArcSDE
as well. With ArcSDE , the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between
Oracle instances and to other supported RDBMSs.

sde2shp—creates an ESRI shapefile from an ArcSDE feature class

sde2cov—creates a coverage from an ArcSDE feature class

sde2tbl—creates a dBASE or INFO file from an RDBMS table

Schema modification
There will be occasions where it is necessary to modify the schema of some tables. You
may need to add or remove columns from a table. ArcCatalog offers an easy-to-use tool
for this and other schema operations such as modifying the spatial index (grids) and
adding and dropping column indexes. To drop a column with ArcSDE command tools,
create an sde view of the layer without the column, export it, then reimport it. To add a
column using the sde admin tools, create a table from your business table using a select
into statement, then add your new column.

Chapter 4 Managing tables, feature classes, rasters, and views 51

Using ArcInfo software’s ArcCatalog and ArcToolbox
applications

So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcInfo Desktop, you may have to use
ArcCatalog to create feature datasets and feature classes within those feature datasets to
use specific ArcInfo 8 Desktop functionality. For that reason, we provide a glimpse of
how to use ArcToolbox and ArcCatalog to load data. Please refer to the ArcInfo Digital
Books on ArcCatalog, ArcToolbox, and the Geodatabase for a full discussion of these
tools.

Loading data

You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm
layers into Geodatabase feature classes with the ArcInfo ArcToolbox and ArcCatalog
applications. ArcToolbox provides a number of tools that enable you to convert data from
one format to another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde,
cov2sde, and sdeimport, accept configuration keywords. By using a configuration
keyword from the dbtune table, you can employ customized data loading options such as
fill factors of indexes, text_in_row sizes, or filegroups for storing tables or indexes.

In the ArcToolbox Shapefile to Geodatabase wizard, we can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
Geodatabase. Since the Geodatabase is maintained by an ArcSDE 8.1 service operating
on a SQL Server database, we can store the resulting feature class using the parameters
identified by the Hampton_subdivision dbtune keyword.

52 ArcSDE Configuration and Tuning Guide for MS SQL Server

The shapefile CASNBRST.shp is converted to a feature class vtest.CASNBRST using ArcToolbox.

Chapter 4 Managing tables, feature classes, rasters, and views 53

Versioning your data

ArcCatalog also provides a means for registering data as versioned. Simply right-click
the feature class to be registered as versioned and select the Register As Versioned
context menu item. You can register standalone feature classes or all feature classes of a
feature dataset.

A feature class is registered as multiversioned from within ArcCatalog.

Permissions

Using ArcCatalog, right-click on the data object class and click on the Privileges context
menu. From the Privileges context menu assign privileges specifying the username and
the privilege you wish to grant to or revoke from a particular user.

54 ArcSDE Configuration and Tuning Guide for MS SQL Server

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset,
feature class, or table, to assign privileges to other users or roles.

Loading a raster into ArcSDE with ArcCatalog

Using ArcCatalog, right-click on the database connection, point to Import, and click on
Raster to Geodatabase. Navigate to the raster file to import. Click Change Settings if you
want to change the coordinate reference system, tile size, pyramids option, or
configuration keyword. Click OK to import the raster file into the SQL Server database.

Chapter 4 Managing tables, feature classes, rasters, and views 55

Defining ArcSDE views
You can create spatial views of your data much the same way you create tabular views.
Views are stored queries or virtual tables. The select statement is stored in the database
instead of the table. SQL Server 2000 allows users to create unique clustered indexes on
views and partition views across multiple servers.

Indexed views are stored in the database in the same manner as a table, while nonindexed
views store only the SQL statements composing them.

With ArcSDE, it is possible to define views between two feature classes or between a
feature class and a table or create more complex views containing subqueries or that span
databases. ArcSDE views are created with the sdetable –o create_view command. When
you create an ArcSDE view, three views are created, one of the business table, feature
table, and spatial index.

Creating an ArcSDE view

Use the sdetable –o create_view command to create a view and the sdetable –o delete
command to remove one. The syntax of sdetable –o create is:

sdetable -o create_view
-T <view_name>
-t <table1,table2...tablen>

-c <table_col1,table_col2...table_coln>

[-a <view_col1,view_col2...view_coln>]
[-w “where_clause">]
[-i <service>]
[-s <server_name>]
[-D <database>]
-u <DB_User_name> [-p <DB_User_password>] [-N] [-q]

The syntax of sdetable –o delete is:

sdetable -o delete -t <table>
[-i <service>] [-s <server_name>] [-D <database>]

-u <DB_User_name> [-p <DB_User_password>] [-N] [-q]

You must list the columns (-c) you want in the view as well as a where clause (–w)
within the sdetable command. Be sure to include the business table’s spatial column to
make the view spatial. You must have ‘create view’ permissions to execute this
command.

This example creates a view of all U.S. counties with a 1990 population per square mile
greater than 50. The –s option specifies a server.

sdetable -o create_view -T CountyPopView -t us_counties -c
shape,name,state_name -w "pop90_sqmi > 50" -s bigman -u beetle -p bug

This example uses a subquery to select the state whose capital city has the largest male
population.

sdetable -o create_view -T ManView -t us_states -c
us_states.shape,us_states.state_name --w "us_states.state_name = (select
us_capitals.state_name from us_capitals where p_male = (select max(p_male)
from us_capitals))" -u beetle -p bug -s bigman

Cross database views

It is possible to create views between tables and sde feature classes that do not reside in
the same database. When you do this, you must correctly qualify the tables involved in
your queries and use the –D (database) switch to identify which database contains the
data on which to create a view.

56 ArcSDE Configuration and Tuning Guide for MS SQL Server

This is illustrated in the following example, where there is a feature class in database "a."
and a standalone, unregistered table in database "b.", and you want to make an sde view
from these two entities in database "a."

1. Fully qualify the standalone table and its columns in your sdetable –o create_view
statement. Or you can use table aliases. You must enclose table names in quotes if you
do.

2. Qualify only to owner.tablename for the sde feature class.

3. Use the -D <database> switch for the "a" database.

4. Run the command as the owner of the sde layer.

The SQL statements to execute this would be:

CREATE VIEW crossDBView
AS SELECT us_statesview.feature, us_statesview.state_name,
vtest.vtest.bob.sub_region
FROM us_statesview, vtest.vtest.bob
WHERE us_statesview.state_name=vtest.vtest.bob.state_name

So your command line would look like this:

C:\>sdetable -o create_view -T bigbob -t
vtest.us_statesview,vtest.vtest.bob
-c
us_statesview.feature,us_statesview.state_name,vtest.vtest.bob.sub_region
-w us_statesview.state_name=vtest.vtest.bob.state_name -i sql82k -D sde -u
vtest -p go

Explanation:
-T bigbob = name of the view

-t vtest.us_statesview,vtest.vtest.bob = us_statesview resides in the
'sde'
database, bob in 'vtest' database

-c
us_statesview.feature,us_statesview.state_name,vtest.vtest.bob.sub_region
= column list fully qualified for stand alone table.

-w us_statesview.state_name=vtest.vtest.bob.state_name = where clause,
fully
qualified for stand alone table.

-D sde = database context

Example using table aliases:

C:\sde81\etc>sdetable -o create_view -T crossdbview -t
vtest.us_statesview,"vtest.vtest.bob x" -c
us_statesview.feature,us_statesview.state_name,x.sub_region -w
"us_statesview.state_name=x.state_name and x.pop1996<1000000" -i sql82k -D
sde
-u vtest -p go

Creating views across linked servers

This is similar to cross database views with the following exceptions. You are forced to
use aliases in your column lists because SQL Server will not allow four- or one-part
qualified names in a column list. You must also define a linked server first and make

Chapter 4 Managing tables, feature classes, rasters, and views 57

sure your DTC service is running. See the SQL Server Books Online for the exact usage
of ‘sp_addlinkedserver.’

1. Define a linked server in SQL Server Query Analyzer. This example was
executed by a sysadmin user in SQL Server 2000.

sp_addlinkedserver
@server='foo',
@srvproduct='',
@provider='SQLOLEDB',
@datasrc='fabio\sql2k',
@location='',
@provstr = 'DRIVER={SQL
Server};SERVER=fabio\sql2k;UID=vtest;PWD=go;database=vtest',
@catalog='vtest'

2. Start the Distributed Transaction Coordinator (MSDTC). Open the Services
panel and scroll down to the MSDTC service. If it is not running, start it.

3. Run the sdetable command with aliased table names:

C:\sde81\etc>sdetable -o create_view -T viewRemoteData -t
vtest.us_statesview,"foo.vtest.vtest.bob x" -c us_statesview.feature,
us_statesview.state_name,x.sub_region -w "us_statesview.state_name =
x.state_name and x.pop1996<1000000" -i sql82k -D sde -u vtest -p go

The SQL statements to execute this would be:

CREATE VIEW viewRemoteData AS SELECT
us_statesview.feature, us_statesview.state_name, x.sub_region
FROM vtest.us_statesview, foo.vtest.vtest.bob x
WHERE us_statesview.state_name=x.state_name

Creating indexed views (SQL Server 2000)

Indexed views are a new feature of SQL Server 2000 and are advantageous when your
view definition employs a complex join. They are a good choice on static data as they
are schemabound to their source. Also, they are stored in the same way as a regular table
with a clustered index. Before you try this, make sure you are familiar with the SQL
Server Books Online documentation covering indexed views.

Creating an indexed view in SQL Server 2000 requires extra work and has many
conditions. These conditions can be summarized as follows:

• The view must be created with Schemabinding.

• The view must be created with QUOTED_IDENTIFIER on.

• The view cannot reference other views.

• Tables referenced in views must be two-part.

• You cannot reference all columns of a table with *.

There are additional rules and conditions. Refer to the SQL Server Books Online under
the topic ‘Creating an Indexed View’ for more information.

As ArcSDE does not create schema bound views by default, follow this process:

1. Create an ArcSDE view with sdetable –o create_view.

2. Open the SQL Server Query Analyzer and drop the business table view with
drop view <view name>. Before you do this, make sure you copy the view
definition.

58 ArcSDE Configuration and Tuning Guide for MS SQL Server

3. Re-create the business table view with the create view statement, but make sure
that you use the WITH SCHEMABINDING option and qualify your view
name and table name with the owner.<table or view name> convention.

4. Create a unique clustered index on the view with the create unique clustered
index statement.

This is an example that creates an indexed view. This example was done in SQL
Server 2000 using a SQL Server authenticated user.

1. Create the view with sdetable –o create_view:

C:\sde81\etc>sdetable -o create_view -T vwWithIndx -t cagis_cent -c
parcelid,object__id,x_coord,y_coord,book,page,parcel,shp -w
"parcel>0393" -u vtest -p go –i sql82k -s fabio -D vtest

2. Query Analyzer—copy the view statement and then drop the view of the business
table.

drop view vwWithIndx

3. Re-create the view. Make sure you qualify the view and table names with the owner
name and use the WITH SCHEMABINDING statement.

CREATE VIEW vtest.vwWithIndx
WITH SCHEMABINDING
AS SELECT parcelid, object__id, x_coord, y_coord, book, page, parcel,
shp
FROM vtest.cagis_cent
WHERE parcel>0393

4. Create a unique clustered index on this view:

create unique clustered index shpIdxView on vtest.vwWithIndx (shp)

Visualizing data with sdegroup
If you have very large datasets, you’ll want to discourage your users from drawing these
at full extent. There is no use in drawing a million polygons at full extent, as you can see
no detail. However, your users may want to visualize what the overall shape or extent of
their data looks like. The command sdegroup takes the existing shapes from a feature
class and groups them into multipart shapes. While this may not be useful to analysis, it
does allow rapid drawing of large amounts of data because it reduces the number of
records. Polygons are generalized into polylines so as to not destroy topological
relationships.

59

CHAPTER 5

Connecting to SQL Server

You can operate ArcSDE under three different configurations: three

tiered with your clients connecting to a middle tier (giomgr) service; two

tiered with your clients making direct connections to the database; and

mixed, where your server accepts both direct and three-tier connections.

This chapter covers how to make your initial connection to ArcSDE

under a three-tiered configuration, how to connect in a two-tier

configuration, and how to operate only in a two-tier environment without

installing ArcSDE.

Making your first connection
VERY IMPORTANT NOTE: By default, SQL Server 2000 uses Windows
authentication. In order to create the sde database and user, you must change this
setting to include SQL Server authentication by right-clicking the server name in the
Enterprise Manager and selecting Properties Security tab. Select, under
Authentication, SQL Server and Windows. Then click OK to accept this setting.
This is illustrated in the following panel. This procedure should be performed before
installation of the ArcSDE software or creation of the sde database and sde user.
After confirming that this option is correct, proceed with this manual.

60 ArcSDE Configuration and Tuning Guide for MS SQL Server

Chapter 5 Connecting to SQL Server 61

If you have your ArcSDE service started, then you have already successfully made a
connection to the data store (as the sde user). To successfully connect to an ArcSDE data
store as a non-sde user, these conditions must be true:

1. The connecting user has been added as a user to the sde database. The connecting user
cannot use a reserved word for a name. Examples of reserved words are max, min,
national, and select. Refer to the SQL Server Books Online, under “reserved keywords,”
for more information.

2. The connecting user has at least create table permissions in the sde database.

3. If the connecting user will own spatial data—that is, load spatial data with the ArcGIS
data loaders such as ArcToolbox or the admin tools such as shp2sde or sdeimport—that
user must have create table and create procedure permissions in the database that will
store the loaded data.

4. You must explicitly connect to a database to perform DDL statements (create table,
alter table, drop table). For example, if you want to load data into a database named
county_hiways, you must connect to it by specifying a database name in your connection.
ArcSDE does not use a login’s default database!

Example: Connecting to ArcSDE from ArcCatalog
Open ArcCatalog. Navigate to the Database Connections node. Expand it and select
‘Add Database Connection.’ Double-click this to bring up the connection properties
dialog box. Under server, enter the name of the ArcSDE server. For Service, input either
your service instance name or your tcp/ip port (e.g., 5151). For Database, leave blank to
connect to the sde database or input another database name. Input a user name and
password for the remaining text boxes.

Figure 5.1: Connecting to a server through ArcCatalog

62 ArcSDE Configuration and Tuning Guide for MS SQL Server

Example: Connecting to ArcSDE through ArcObjects™

To use this sample, you must have the esricore tlb referenced in your MS Visual Basic
development project.

Dim pPropSet as iPropertySet
Dim pWorkspaceFactory as iWorkspaceFactory
Dim pWorkspace as iWorkspace

set pPropSet = new PropertySet
set pWorkspaceFactory = new SDEWorkspaceFactory
with pPropSet

.setProperty “Server” = “vogon”

.setProperty “Instance” = “5151”

.setProperty “Database” = “contours”

.setProperty “User” = “arthur”

.setProperty “Password”=“dent”

.setProperty “version” = “sde.DEFAULT”
end with
set pWorkspace=pWorkspaceFactory.Open(pPropSet)
if pWorkspace is nothing then

msgbox “Connection Failed”
else

msgbox “Success”
end if

Example: Connecting to ArcSDE through ArcExplorer™

Open the Catalog, expand the ArcSDE servers node, then double-click the Add ArcSDE
Connection entry. In the ArcSDE Connection panel, fill out your server, instance,
database (if you leave this blank, you’ll connect to the ‘sde’ database), user name, and
password arguments, then click “Test Connection.” If the connection is successful,
(grayed out), then click OK.

Figure 5.2: Connecting to ArcSDE from ArcExplorer

Chapter 5 Connecting to SQL Server 63

Using the ArcSDE Direct Connect Driver
Beginning with ArcSDE 8.1, ArcSDE client applications can connect to either an
ArcSDE service or directly to an MS SQL Server instance. The direct connection
capability, added during the ArcSDE 8.1 release, was achieved by embedding the
ArcSDE application server technology into the ArcSDE client software. Any application
programmed with the functionality of the ArcSDE 8.1 C API library can connect directly
to an MS SQL Server instance.

ArcSDE client applications that connect to an ArcSDE service send spatial requests to the
service. The ArcSDE service converts the spatial requests into SQL statements and
submits them to the SQL Server instance. Upon receiving results from the server, the
ArcSDE service converts the result into spatial data recognizable to the ArcSDE client.
At ArcSDE 8.1, the functionality of the ArcSDE service has been linked into the ArcSDE
C API, allowing ArcSDE client applications to connect directly to MS SQL Server
instances. Spatial requests are converted to SQL statements by the ArcSDE client
applications instead of the ArcSDE service.

Before you can connect to an ArcSDE service, you must install and configure the
ArcSDE product. The sde user must be created and the sde setup program
(sdesetupmssql.exe) must be run to create and populate the ArcSDE system tables and
required stored procedures. In addition, ArcSDE must be able to reference an
ArcSdeServer license from a license manager accessible through the network. Since a
direct connection to an MS SQL Server instance does not require the presence of an
ArcSDE service, the ArcSDE product does not need to be installed. You are, however,
required to run the ArcSDE setup program, which creates the necessary ArcSDE system
tables in the sde user’s schema. Also, to obtain a read–write connection to the MS SQL
Server database, an ArcSDE client application must reference a valid ArcSdeServer
license. If an ArcSdeServer license cannot be referenced, access is restricted to read-only.

The ArcSDE setup program is located in the bin directory of all ESRI products capable
of connecting to ArcSDE. If you do not already have one, an ArcSdeServer license can
be obtained from ESRI Customer Support. To connect directly to an MS SQL Server
instance, you must have Microsoft Data Access Components 2.5 installed on your client
machine. This MDAC is installed by ArcGIS, so you may already have it. The sections
that follow provide details on how to set up the client and server machines to perform a
direct connection to an MS SQL Server instance. For more information regarding an
ArcSDE service, refer to the ArcSDE Installation Guide for installation instructions and
the Managing ArcSDE Services for configuration and connection instructions.

All ArcSDE client applications, such as ArcMap or ArcCatalog, function the same way
regardless of whether a user connects to an ArcSDE service or directly to an MS SQL
Server instance. The only difference occurs during the entry of the connection
information.

Setting up your server without installing ArcSDE

ArcSDE requires an ‘sde’ database and at least an ‘sde’ user with create table, view, and
stored procedure permissions. The two most common ways of doing this are with the
Enterprise Manager for SQL Server 7 or SQL Server 2000 or with a t-sql script. After
creating your sde database and user, you must run the sdesetupmssql in the \bin directory
where you have the gsrvrsql81.dll; the sdesqlsvr81.dll; and three client libs sg81.dll,
pe81.dll, and sde81.dll. Finally, set either SDEHOME or ARCHOME to the directory
containing the bin folder holding these files.

1. Create an ArcSDE database and user

Either run this script in the SQL Server Query Analyzer or see the screenshots from the
SQL Server Enterprise Manager below:

64 ArcSDE Configuration and Tuning Guide for MS SQL Server

NOTE: If you run this script, it will be necessary to change your paths where indicated.

/*
Script: setupSDEdb.sql
purpose:
1. Creates sde database if it doesn’t exist
2. Creates sde and gdb logins if they don’t exist
3. adds logins to sde database if they are not there
4. grants create table view and procedure to users in sde.

NOTE: Change the paths in the filename statements below
These files will be written to your disk
*/

use master
go

if exists (select name from sysdatabases where name = ‘sde’)
begin
print ‘SDE database already exists, attempting to create login and user’
end
else
begin
CREATE DATABASE sde
on
(name=‘sde’,
--change paths here
--to a valid location on
--your disk
filename=‘d:\sdedb\sql\sde.mdf’,
size=30,
maxsize=UNLIMITED,
filegrowth=30)
LOG ON
(name=‘sdelog’,
--change paths here
--to a valid location on
--your disk
filename=‘d:\sdedb\sql\sdelog.ldf’,
size=10mb,
maxsize=UNLIMITED,
filegrowth=10mb)
end

/*
now attempt to create logins and users
if they don’t exist
*/

if exists (select name from syslogins where name = ‘sde’)
begin
print ‘sde login exists, attempting to create test user’
end
else
begin
--create sde login
--password is ‘go’
--default db = sde
exec sp_addlogin ‘sde’, ‘go’, ‘sde’
end

--create a test user
if exists (select name from syslogins where name = ‘gdb’)
begin
print ‘gdb test login already exists’
end
else
begin
--create a test login whose name = gdb
--and password = gdb
exec sp_addlogin ‘gdb’,’gdb’,’sde’

Chapter 5 Connecting to SQL Server 65

end

/*
switch db context to sde
check for users in sde
add if necessary
grant create table, view and procedure to
both users
*/
go
use sde
go

--sde login
if exists (select name from sysusers where name = ‘sde’)
begin
print ‘sde user already added to sde database’
end
else
begin
exec sp_adduser sde
end

--gdb login
if exists (select name from sysusers where name = ‘gdb’)
begin
print ‘gdb user already added to sde database’
end
else
begin
exec sp_adduser gdb
end
go

grant create table to sde
grant create table to gdb
grant create view to sde
grant create view to gdb
grant create procedure to sde
grant create function to sde –-SQL SERVER 2K ONLY!!
grant create procedure to gdb

/*
make sure you run sdesetupmssql -o install
from either %sdehome%\bin or %archome%\bin
*/

2. Create the SDE database and user with the SQL Server Enterprise
Manager

Create the sde database

Open Enterprise Manager, expand your “Microsoft SQL Servers” node, expand your
server, right-click Databases, and select New Database.

66 ArcSDE Configuration and Tuning Guide for MS SQL Server

You can take the defaults here or fill out the initial size, location, etc. Do the same for the
transaction log. Click OK and the sde database will be created.

Create the sde login and user: From within your server’s node, expand the security node
and select logins.

Chapter 5 Connecting to SQL Server 67

Now right-click in the right-hand panel. Select New Login.

Fill in the login name property and password.

The default database should be ‘sde.’ Now click the ‘Database Access’ tab and click the
sde database check box.

68 ArcSDE Configuration and Tuning Guide for MS SQL Server

Now grant this new user create table, view and stored procedure in the ‘sde’ database. Go
back to the database’s node, right-click the ‘sde’ database, and select Properties. When
the Properties dialog appears, click the Permissions tab.

Check the create table, view, and sp (stored procedure) check boxes. If you are using
SQL Server 2000, you must also grant create function to sde. Click OK.

Chapter 5 Connecting to SQL Server 69

RUN sdesetupmssql

You are almost done. Now from a command prompt, navigate to the directory that
contains gsrvrsql81.dll, sdesqlsvr81.dll, sg81.dll, sde81.dll, and pe81.dll with a cd (chdir)
command. There should also be an executable in this directory called sdesetupmssql.exe.
In this example, these executables are located in the ArcGIS installation folder. This
executable creates the sde and Geodatabase metadata. The syntax for this command is
listed below.

C:\ArcGIS\arcexe81\Bin>sdesetupmssql
Usage for sdesetupmssql:
-?
-h
-o upgrade [-H <sde_directory>] [-u <DB_Admin_user>] [-p
<DB_Admin_password>]
[-s datasource] [-N] [-q]
-o list [-H <sde_directory>] [-u <DB_Admin_user>] [-p <DB_Admin_password>]
[-s datasource] [-q]
-o install [-H <sde_directory>] [-u <DB_Admin_user>] [-p
<DB_Admin_password>]
[-s datasource] [-N] [-q]

In this example below, sdesetupmssql will be run against a data source called “rift\sql2k,”
which is a SQL Server 2000 instance name.

C:\ArcGIS\arcexe81\Bin>sdesetupmssql -o install -u sde -p go -s rift\sql2k
-H c:\ArcGIS\arcexe81

The user should confirm that the –H switch is entered properly.

70 ArcSDE Configuration and Tuning Guide for MS SQL Server

How do you know what your data source is? The data source will almost always be the
name of your SQL Server host. However, if you have both SQL Server 7 and SQL
Server 2000 installed, the SQL Server 2000 instance will have a different name that you
assigned to it when you did the installation. If this is the case, look in the Enterprise
Manager. You should see both your instances listed here.

Making a direct connection

Whether or not you have an ArcSDE service running or have installed the ArcSDE
software, you are ready to make a direct connection. Here’s what you must do:

You must have sdehome set and pointing to the folder that contains the bin directory
holding the gsrvrsql81.dll; the sdesqlsvr81.dll; and the client libraries sg81.dll, sde81.dll,
and pe81.dll.

• You can use substitute SDEHOME with ARCHOME.

• Or set neither and let the search default to HKEY_LOCAL_MACHINE-
SOFTWARE-ESRI-ArcInfo-Desktop-8.0-SourceDir - BIN.

For example: Presume you are attempting a direct connection from ArcCatalog. You
have installed ArcGIS into c:\arcgis\arcexe81. The bin folder beneath the arcexe81
directory holds the gsrvrsql81.dll, the sdesqlsvr81.dll, and the three client libs. You can
set SDEHOME to c:\arcgis\arcexe81 and attempt your direct connection.

If you have one setup, try to connect. To connect:
- Server name = ArcSDE Server (or any string)
- Instance = sde:sqlserver:<data source>
- Database = a database you want to explicitly connect to
- User = any valid DBMS/ArcSDE user
- Password = any valid DBMS/ArcSDE user’s password

You must have at least MDAC 2.5 installed. How can you tell? Check the file version of
msado15.dll in \program files\common files\system\ado. If its version is 2.5 or greater,
you are OK. You can also use the component checker from Microsoft. This tool will
allow you to remove MDAC as well. Beware of installing an MDAC onto
Windows 2000; it may already have it installed.

Chapter 5 Connecting to SQL Server 71

Licensing Direct Connect clients

If you do not have a valid ArcSDE license service, you will still be able to connect to any
ArcSDE data store. However, your connections will be read-only. If you do have a
license server, you can set an environment variable, LM_LICENSE_FILE, to access
those licenses. Make sure you set it with the host name prefixed with an @ sign. For
example, setting this variable in DOS would look like this:

C:\sde>SET LM_LICENSE_FILE=@FABIO

Setting this variable in Windows 2000 would look like the following panel.

72 ArcSDE Configuration and Tuning Guide for MS SQL Server

73__

CHAPTER 6

National language support

Storing data in an ArcSDE SQL Server database using collation sets other

than the SQL Server default, Latin1_General, requires some extra

configuration on both the client and the server. This section provides

guidelines for configuring both the SQL Server database and the ArcSDE

client environment to enable the use of collation sets other than

Latin1_General.

SQL Server database collation designator
The default collation designator for SQL Server 2000 databases is Latin1_General. The
collation is selected when SQL Server 2000 is installed and cannot be changed
afterwards. The default collation will support U.S. English and most Western European
languages. Change this default only if you are not using a language from this group. After
installation is complete, to change a collation designator the rebuild master utility must be
run and the data reloaded. Consult the SQL Server Books Online to determine the
collation designator that is appropriate for your data. Also, select how data will be sorted.
Sort order can be binary, case sensitive, accent sensitive, kana sensitive, or width
sensitive. If the binary option is not selected, SQL Server 2000 follows sorting and
comparison rules as defined in dictionaries for the associated language or alphabet.

It is also possible to choose an alternative collation if backward compatibility with
previous installations of SQL Server 7 or earlier is desired. The choice here will then
depend on the collation choice made in the earlier instance of SQL Server. If the previous
installation accepted the defaults, select Dictionary Order, Case Insensitive. This is
backward compatible with the 1252 character set, which was the default in SQL
Server 6.5 and SQL Server 7.0.

Setting the SDE_CHARSET variable for Windows NT clients

Exercise care in setting the SDE_SQLCHARSET on the Windows NT platform. In the
Windows NT environment there are two different codepage environments, Windows
American National Standard Institute (ANSI) and Original Equipment Manufacturer
(OEM). Windows applications such as ArcInfo and ArcView run in the ANSI codepage
environment. ArcSDE administration tools and C API applications invoked from the
MS–DOS Command Prompt run in the OEM codepage environment.

If you use both Windows applications and MS–DOS applications together then set the
SDE_SQLCHARSET variable for MS–DOS applications by opening the MS–DOS
Command Prompt and issuing a MS–DOS SET command. Initially verify that the data to
be loaded is in either ANSI or OEM format. From the MS–DOS Command Prompt issue
one of the following commands:

74 ArcSDE Configuration and Tuning Guide for MS SQL Server___

74

For sdeimport or sdeexport:commands:

If the data is in ANSI format: set SDE_SQLCHARSET=cp1257

If the data is in OEM format: set SDE_SQLCHARSET=cp437

In the above ANSI example, cp1257 would be for Baltic languages. In the OEM
example, cp775 is for Western European languages. The user should insert the correct
number for the language that they are using. A complete list of code pages may be found
in SQL Server books online. The user should also not place any blank spaces at the end
of the command.

For sde2shp, shp2sde, cov2sde, or sde2cov commands:

If the code is running from an MS–DOS Command Prompt: set
SDE_SQLCHARSET=cp775

If the code is running from a UNIX platform: setenv SDE_SQL_CHARSET
iso_13

Again, the user should insert the appropriate number for their language in these
commands and should not place a blank space after the command.

75

CHAPTER 7

Standby servers and log
shipping

The use of a standby server that can be brought online if the primary

production server fails can avert the loss of data or allow users to continue

working with the database. SQL Server 7 and SQL Server 2000 both

support the use of standby servers. A standby server contains a copy of

the databases on the primary server and can be brought online if the

primary production server fails.

Implementing a standby server
Implementing a standby server involves three phases:

1. Creating the database and ongoing transaction log backups on the primary
server.

2. Setting up and maintaining the standby server by backing up the database on the
primary server and restoring it on the standby server.

3. Bringing the standby server online if the primary server fails.

If the use of a standby server is necessary, all users will have to log onto the standby
server. User processes are not transferred automatically to the standby server. In addition,
transactions are not maintained. It will be necessary to run sp_change_users_login once
the switch to the standby server is made.

To test ArcSDE 8.1 in a Standby Server configuration, the following steps were
implemented. For more information, see the instructions in SQL Server Books Online.

1. Create the full database backups on the Primary Server. Create a transaction log
backup of each database that is duplicated. The frequency of these transaction
log backups will depend on the amount of transaction changes that users make.

2. Restore the database backups onto the standby server that is in standby mode.
Specify one undo file per database. Periodically apply the transaction logs from
the primary server to the databases on the standby server. Specify the same
undo file used in previous steps.

76 ArcSDE Configuration and Tuning Guide for MS SQL Server

3. If the primary server should become unavailable, apply to the standby server
any transaction logs that have not yet been applied to it. Recover the databases
on the standby server.

4. The standby server is now available for users to make changes to the database.
Configuration of the standby server can be done in either Enterprise Manager or
Query Analyzer.

The following steps illustrate the creation of a standby server in Enterprise Manager.

Confirm that the database is in Full Recovery Model.

In order to implement transaction log backups, the database must be in Full Recovery
Model. This is the default setting for a new database created with the Standard and
Enterprise Editions of SQL Server 2000. To change the Recovery Model in Enterprise
Manager, right-click on a database and choose Properties. Click the Options tab and
change the recovery model to Full. Click OK to continue.

Backing Up Databases:

In Enterprise Manager, right-click on the database to backup, choose all tasks, Backup
Database.

Chapter 7 Standby servers and log shipping 77

Choose Backup Database Complete and select the location in which to store the backup.
Click on the Options tab.

78 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click Verify backup upon completion and click OK to continue.

Chapter 7 Standby servers and log shipping 79

To back up the transaction log, right-click the database, choose all tasks, Backup
Database.

Click on Backup Transaction log. Choose the destination for the backup file. As before,
click on the Options tab and click on Verify backup upon completion. Click on OK to
continue.

80 ArcSDE Configuration and Tuning Guide for MS SQL Server

To restore the database on the standby server, right-click on the database to restore, choose all
tasks, restore database.

Choose Restore backup set Database - complete. Select Restore From device and then
select the file to restore. Click on the Options tab.

Chapter 7 Standby servers and log shipping 81

In the Recovery completion state, select Leave database read-only and able to restore
additional transaction logs. Choose the location and filename of the undo file. Click OK
to continue. The database will be restored and will be in read-only mode. Continue this
process for each transaction log to be restored on the standby server.

If the production server should become unavailable, apply all remaining transaction logs
to the standby server. From Query Analyzer recover the standby server database without
restoring. Execute the following statement with the name of the database to be recovered.

-- Restore database using WITH RECOVERY.

RESTORE DATABASE sde WITH RECOVERY

The standby server will now be in the same state as the production server from the last
transaction log. All changes after the last backup of the transaction log will be lost.

82 ArcSDE Configuration and Tuning Guide for MS SQL Server

Log shipping

In SQL Server 2000 Enterprise Edition, log shipping can be used to send transaction logs
from one database to another on a scheduled basis. This will allow synchronization of the
source and the destination database. The use of this is very efficient with standby servers.
Log shipping may be configured in Enterprise Manager. Complete instructions for
standby server and log shipping are covered in SQL Server Books Online.

This example will use SQL Server 2000 Enterprise Edition to log ship transactions
between two servers.

The initial procedure is the same as configuring a standby server. There should be a
primary and standby server. The standby server should have the backups restored from
the primary server and should be in read-only mode.

From the primary server, select Tools, Wizards, Management, Data Maintenance Plan
Wizard.

Click OK to start the wizard.

Chapter 7 Standby servers and log shipping 83

Click Next>.

84 ArcSDE Configuration and Tuning Guide for MS SQL Server

Select the database that the transaction logs are to be shipped from. Click the Ship the
transaction logs to other SQL Servers check box. Click Next>.

Chapter 7 Standby servers and log shipping 85

As part of the update Wizard, tasks other than log shipping are performed. All defaults
for these tasks will be accepted. Appropriate entries should be made for your installation.
Click Next>.

86 ArcSDE Configuration and Tuning Guide for MS SQL Server

Default selections are shown. Selecting Attempt to repair any minor problems will put
the database in single-user mode so that availability will be restricted. Click Next>.

Chapter 7 Standby servers and log shipping 87

Select the database backup options and click Next>.

88 ArcSDE Configuration and Tuning Guide for MS SQL Server

Specify the location to store the backup file. Click Next>.

Specify the location to store the transaction backup file. Click Next>.

Chapter 7 Standby servers and log shipping 89

In order to run log shipping, a share on the primary server drive that stores the transaction
log must be created. Enter the location of this drive and click Next>.

90 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click Add to specify the log shipping destination server.

Chapter 7 Standby servers and log shipping 91

Enter the server name for the destination of the transaction logs. Here an existing
database was used to receive the transaction logs. Click OK.

92 ArcSDE Configuration and Tuning Guide for MS SQL Server

Confirm that the destination server and database are correct and click Next>.

Chapter 7 Standby servers and log shipping 93

Enter the backup schedule for the log shipping and click Next>.

94 ArcSDE Configuration and Tuning Guide for MS SQL Server

Specify the log shipping thresholds and click Next>.

Chapter 7 Standby servers and log shipping 95

Specify the server to monitor the log shipping. Click Next>.

96 ArcSDE Configuration and Tuning Guide for MS SQL Server

Specify any reports to generate. Click Next>.

Chapter 7 Standby servers and log shipping 97

Specify how to store the maintenance plan records. Click Next>.

98 ArcSDE Configuration and Tuning Guide for MS SQL Server

Name the database maintenance plan. Here the default DB Maintenance Plan1 was
accepted. Confirm the options selected and click Next>.

Chapter 7 Standby servers and log shipping 99

Click Finish to create a database maintenance plan.

It will be necessary to start the SQL Server Agent. In Enterprise Manager, open
Management and right-click SQL Server Agent to start. The log shipping will be
performed at the times specified in the log shipping schedules. The steps to restore the
standby server are the same as above. If the production server should become
unavailable, apply all remaining transaction logs to the standby server. From Query
Analyzer recover the standby server database without restoring. Execute the following
statement with the name of the database to be recovered.

-- Restore database using WITH RECOVERY.

RESTORE DATABASE sde

WITH RECOVERY

The standby server will now be in the same state as the production server from the last
transaction log. All changes after the last backup of the transaction log will be lost.

100

CHAPTER 8

Backup and Recovery

Introduction
MS SQL Server allows you to backup a database from one server and restore it to
another. You can also detach and reattach databases between servers. This functionality
allows you an easy way of distributing your data to other servers without having to worry
about reloading it and rebuilding relationships or networks.

If you restore a database backup from one server to another, the code pages and sort
orders of those two servers must be identical. For example, you cannot restore a database
built with Binary Sort Order (BSO) to a server configured for default (dictionary) sort
order. You can ascertain your server’s sort order by running the stored procedure
‘sp_helpsort’ in the master database.

In this example, this server is configured for default, or dictionary, sort order.

Server default collation
Latin1-General, case-insensitive, accent-sensitive, kanatype-insensitive,
width-insensitive for Unicode Data, SQL Server Sort Order 52 on Code Page
1252 for non-Unicode Data

A backup operation also backs up the database’s system tables including sysusers. When
you apply a backup to a different server, the users listed in the database may differ from
those users listed in the new server’s sysxlogins table in the master database. This will
prevent you from logging into the restored database until you correct the login mapping
between the master database’s sysxlogins table and the restored database’s sysusers table.
To synchronize the two tables, run sp_change_users_login.

Moving data using backup and restore
This section assumes you are going to backup an ArcSDE database and apply that
backup to another server that does not have a preexisting ArcSDE installation.

1. Backup the SDE database and any other database you wish to apply to another
server.

2. Copy the backup file(s) to the new server.

3. Restore the backup file(s) to the new server.

4. Run sp_change_users_login to synchronize the sysuser’s table in each newly
restored database with the master database’s sysxlogins table.

1. Backup the SDE database

Use either t-sql’s BACKUP command or the Enterprise Manager’s backup utility to
backup the sde and any other spatial database you have. In this example, we use the
Enterprise Manager to backup the sde database.

Chapter 8 Backup and recovery 101

101

Expand Enterprise Manager’s Server Group, then your server host name. Right-click
your database, select all tasks backup database.

The backup database form will appear. You’ll need to add a destination with the ‘add’
button if none appears. Click Add and choose a directory to backup to.

102 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click OK when you are done. See the SQL Server Books Online for exact information
on backup types and options.

2. Copy the backup file(s) to the new server

In the example above, the backup file is located on D:\rhiannon_backup. Copy the
backup file to the new server.

3. Restore the backup file(s) to the new server

Expand the new server in the Enterprise Manager’s server group. Right-click ‘databases’
and select all tasks restore database.

The Restore database dialog box will appear. Click the From device radio button and
then the “Select Devices” button.

Chapter 8 Backup and recovery 103

103

If you want to restore the database with a different name, change its name in the Restore
as database combo box. NOTE: If you do this, you may cause inconsistencies in the sde
or gdb metadata tables. Navigate to the backup file and select it. Click OK all the way
back to this form and select the Options tab.

104 ArcSDE Configuration and Tuning Guide for MS SQL Server

In the middle of this form, you’ll see a grid control with paths in it. You’ll want to
verify that the paths are correct for your restore file. You can restore these files to
any location you like, as long as it exists on disk. If you check Force restore over
existing database, you’ll restore this database over an existing one. If you don’t and
you have an existing database with the same name, the restore will fail. Click OK.

Once the restore finishes, open the database in the Enterprise Manager and verify your
tables are there. Now you must synchronize the database users with their logins located in
master.dbo.sysxlogins.

4. Run sp_change_users_login

When you restore a database from a backup created on another machine, there is a chance
that a database user’s identification number (either an SID or a GUID) does not match the
same entry in the master.dbo.sysxlogins table. There is also a chance that the database
user does not exist in the master.dbo.sysxlogins table. Since a restore also restores a
database’s sysusers table, it is possible for a record to exist here but not be present in
master.dbo.sysxlogins. Hence, there are two scenarios you need to consider:

Chapter 8 Backup and recovery 105

105

• The user exists as a login on server but has a different identification (SID or
GUID).

• The user does not exist (added as a login) on the server.

This does not apply to Windows Authenticated logins.

Scenario 1: The user exists on both servers but has a different identifier

In this example, both servers have a login called ‘sde.’ After you restore the sde database
onto the new server, the sde user’s SID differs in the sde database from the sde login’s
SID in the master.dbo.sysxlogins table.

Use sde
go
Select SID from sysusers where name = ‘sde’
Use master
go
select SID from sysxlogins where name = ‘sde’

SID

0x76695419BFAED41184FD00C04F8D0451

(1 row(s) affected)

SID

0xEDDFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

To synchronize the two accounts, run sp_change_users_login. For exact usage, see the
SQL Server Books Online. In this example, we use the “update_one” option to update
just the sde user. You must run sp_change_users_login within the database you restored
(or want to change the login in).

Use sde
go
sp_change_users_login ‘update_one’,’sde’,’sde’

Rerun the SID query above to verify your results:

0xEDDFCA8E56B0D411850000C04F8D0451
0xEDDFCA8E56B0D411850000C04F8D0451

Scenario 2: The user does not exist on the destination (restore) server

This scenario differs from the first one in that a user exists in the database but not as a
login in the master.dbo.sysxlogins table. This can happen when you create a login on a
server, backup the databases on that server, then restore the databases to another server
that does not have a record for this login. In this example, the sde database is restored
onto a machine that never had an ‘sde’ login.

Use sde
go
Select SID from sysusers where name = ‘sde’
Use master
go
select SID from sysxlogins where name = ‘sde’

SID

0x76695419BFAED41184FD00C04F8D0451

(1 row(s) affected)

106 ArcSDE Configuration and Tuning Guide for MS SQL Server

SID

(0 row(s) affected)

To rectify this, you must add an ‘sde’ login to the server but not grant them access to the
sde database. To add a login, use the sp_addlogin stored procedure or use the logins tool
with the Enterprise Manager:

sp_addlogin ‘sde’,’go’,’sde’

Now run sp_change_users_login to synchronize the SID values in master.dbo.sysxlogins
and the restored database’s sysusers table. You must run sp_change_users_login in the
sde database since its sysusers table is out of sync with the master.dbo.sysxlogins table.

use sde
go
sp_change_users_login ‘update_one’,’sde’,’sde’

Now verify that the SIDs are equal by rerunning our SID query.

Use sde
Go
Select SID from sysusers where name = ‘sde’
Use master
Go
select SID from sysxlogins where name = ‘sde’
SID

0xF6DFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

SID

0xF6DFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

Once you’ve synchronized the users, you are ready to either start the ArcSDE service or
make direct connections to it.

Chapter 8 Backup and recovery 107

107

Moving Data using sp_detach_db and sp_attach_db
You can also move databases using the SQL Server stored procedures sp_detach_db and
sp_attach_db. A detached database can be one file or several files, depending upon how
you created the database. The procedure is similar to the backup and restore example,
but differs in that you don’t have a backup file of your database. Be careful – once you
attach your database, you don’t have a copy of it, so if you delete it, you’ll lose your data.

To move your database(s) with sp_detach_db and sp_attach_db:

1. Detach your database from one server.

2. Copy the datafiles and transaction logfiles to the target server and re-attach the
database there with sp_attach_db.

3. Run sp_change_users_login to synchronize the sysuser’s table in each newly
restored database with the master database’s sysxlogins table (SQL Server logins
only).

1. Detach the database

Read the SQL Server Books Online for a complete discussion of sp_detach_db. When
you detach the database, you unhook it from SQL Server without having to shut SQL
Server down. For example:

use master
sp_detach_db 'sde'
go

2. Copy the Database to Another Server and Run
sp_attach_db

The previously detached database will reside in its previous data folder. Copy it and it’s
log file to the target server. Then execute the procedure sp_attach_db to reattach the
database to the server:

sp_attach_db 'sde',
@filename1='d:\SQL2K_DATAFILES\MSSQL\Data\sdedata.mdf',
@filename2='d:\SQL2K_DATAFILES\MSSQL\Data\sdelog.ldf'

You must supply a pathname for the database files and logfiles.

2. Run sp_change_users_login to synchronize the sysuser’s
table

Follow the same procedure outlined above in step 4.

108

CHAPTER 9

Configuring snapshot
replication

Replication is used to create multiple copies of the same data that can be

distributed to multiple other databases throughout an organization.

Implementing snapshot replication

Snapshot replication is used to distribute an entire copy of the information from the
distributing database to the subscribing database. In SQL Server 7 or SQL Server 2000, it
is the easiest type of replication to setup and maintain. It is most appropriate for read-only
data, and there is a high degree of latency in this process. Any changes that are made to
the data at the subscriber will be overwritten once the next snapshot image is downloaded
from the distributor. Management of the distribution of the snapshot can be performed
from the distribution server, a push subscription, or from the subscription server, a pull
subscription. The use of a push or pull subscription is dependent on the particular
circumstances of each organization. A push subscription can be centrally managed but
will require a greater storage premium on the distribution server.

Implementation of snapshot replication, in this example replication, will be between two
instances of SQL Server 2000. The procedure will be similar for SQL Server 7.

From Enterprise Manager, for the SQL Server instance that you wish to replicate from,
choose TOOLS; Replication; and Configure Publishing, Subscribers, and Distribution.
This will begin the process of configuring the distribution server.

109 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click Next>.

Choose the server to act as the distributor, then click Next>.

Chapter 9 Configuring snapshot replication 110

Specify the path to the replication snapshot folder, then choose Next>.

111 ArcSDE Configuration and Tuning Guide for MS SQL Server

You may accept the default configuration from SQL Server, but for this example we will choose to customize
the publishing and distribution settings. Click Next>.

Chapter 9 Configuring snapshot replication 112

Select the name and location of the distribution database and logfiles. Then choose
Next>.

113 ArcSDE Configuration and Tuning Guide for MS SQL Server

Enable the servers to use this distributor after they are configured as Publishers. Then
choose Next>.

Chapter 9 Configuring snapshot replication 114

Enable the databases that are to be used for replication. Here choose Transactional, which
includes snapshot. Choose Next>.

115 ArcSDE Configuration and Tuning Guide for MS SQL Server

Enable the subscribing server to receive publications from the distributor. Then choose
Next>.

Chapter 9 Configuring snapshot replication 116

Choose Finish to complete the configuration of the distribution server.

117 ArcSDE Configuration and Tuning Guide for MS SQL Server

Choose Close to complete the distribution configuration process.

To create and manage a publication in Enterprise Manager, choose Replication, then
choose Create and manage publications.

Chapter 9 Configuring snapshot replication 118

Highlight the source of the publication and click Create Publication.

119 ArcSDE Configuration and Tuning Guide for MS SQL Server

The Welcome to the Create Publication Wizard will appear. We will run this example
with the Show advanced options in this wizard configured. Choose Next> to continue.

Chapter 9 Configuring snapshot replication 120

Highlight the database that contains the objects to be published, then click Next>.

121 ArcSDE Configuration and Tuning Guide for MS SQL Server

Select Snapshot publication, then click Next>.

Chapter 9 Configuring snapshot replication 122

For this example, SQL Server 2000 was run. ArcSDE currently supports SQL Server
2000 and SQL Server 7. Click Next>.

123 ArcSDE Configuration and Tuning Guide for MS SQL Server

Choose the data to transfer; here all tables in sde will be replicated. It is necessary here to
ensure that the tables are also replicated with the correct owner on the subscribing
database. For each table that is replicated, click the ellipsis next to the Object and the
following screen will appear. Enter the correct owner of the table for the subscribing
database.

Chapter 9 Configuring snapshot replication 124

Confirm that the source table owner and the destination table owner are correct, then
click OK to return to the previous screen. Click Next> at that screen to continue.

125 ArcSDE Configuration and Tuning Guide for MS SQL Server

ROWGUIDCOL is a unique identifier that is added to tables used in merge replication.
This makes it possible to track the lineage of changes made to a record. Click Next>.

Chapter 9 Configuring snapshot replication 126

Enter a publication name and publication record and click Next>.

127 ArcSDE Configuration and Tuning Guide for MS SQL Server

For this example, we will choose to customize the publication properties. Click Next>.

Chapter 9 Configuring snapshot replication 128

No filtering of this publication will be chosen. Click Next>.

129 ArcSDE Configuration and Tuning Guide for MS SQL Server

Only named subscriptions will be allowed in this example. Click Next>.

Chapter 9 Configuring snapshot replication 130

The snapshot agent schedule will be changed. Click Change.

131 ArcSDE Configuration and Tuning Guide for MS SQL Server

Set the parameters to make the snapshot. Click OK. You will return to the previous
screen.

Chapter 9 Configuring snapshot replication 132

Click Next>.

133 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click Finish to complete the creation of the publication. In this example we will create a
push subscription of the publication.

Chapter 9 Configuring snapshot replication 134

Highlight the publication and select Push New Subscription.

135 ArcSDE Configuration and Tuning Guide for MS SQL Server

The Welcome to the Push Subscription Wizard will appear. This example will select
advanced options. Click Next>.

Chapter 9 Configuring snapshot replication 136

Browse to or create the database on the subscribing database that will receive the
publication. Click Next>.

137 ArcSDE Configuration and Tuning Guide for MS SQL Server

For this example, the agent will be run at the Distributor. Click Next>.

Chapter 9 Configuring snapshot replication 138

This example will change the Merge Agent schedule rather than run continuously. Click
Change.

139 ArcSDE Configuration and Tuning Guide for MS SQL Server

Select the parameters to run the Merge Agent schedule. Click OK.

Chapter 9 Configuring snapshot replication 140

For this example, choose Yes, initialize the schema and data. Click Start the Snapshot
Agent to begin the initialization process immediately, based on the parameters to start
earlier. Click Next>.

141 ArcSDE Configuration and Tuning Guide for MS SQL Server

Select the subscription priority to resolve conflicts, then click Next>.

Chapter 9 Configuring snapshot replication 142

Click Next> to start the required services.

143 ArcSDE Configuration and Tuning Guide for MS SQL Server

Click Finish to complete the replication procedure.

144

CHAPTER 10

Configuring transactional
replication

ArcSDE 8.1 for MS SQL Server supports transactional and snapshot

replication. The transactional model allows a replication

distributor/publisher to update its data and then propagate those edits

downstream to its subscribers. The snapshot model creates entire

snapshots of data and delivers the entire snapshot to its subscribers.

Snapshot replication works well with smaller, read-only data.

Transactional replication proves better for frequent updates to dynamic

data.

Before implementing transactional or snapshot replication, you should

have a well-developed understanding of the SQL Server replication

architecture. Make sure to read the section “Replication” in the SQL

Server Books Online. This section demonstrates how to configure

transactional and snapshot replication from a SQL Server 2000

publisher/distributor to a SQL Server 2000 replication subscriber.

Implementing transactional replication

Basic components of transactional replication with ArcSDE data

1. Create primary keys on all ArcSDE business tables. We recommend that you
use a column that is an sde-maintained rowid. Use either the ObjectID field of
data loaded with ArcCatalog or ArcToolbox or add a field with sdetable -o
alter_reg and use the -C sde switch.

2. Create primary keys on five Geodatabase metadata tables (see the table below).

3. Define your publication: replicate all ArcSDE tables and stored procedures
except SDE_process_information, SDE_state_locks, and SDE_table_locks.
Also, it is not necessary to replicate the logfiles, SDE_logfiles and
SDE_logfile_data. Do not replicate the execution of the SDE stored procedures.
You must manually remap ownership of replication articles; SQL Server, by
default, remaps all article ownership to ‘sa.’

4. Create Subscriptions to each replication publication.

145 ArcSDE Configuration and Tuning Guide for MS SQL Server

5. Deliver your snapshot to your replication subscribers. You can do this by using
the SQL Server Distribution Agent, backup and restore, or sp_detach_db and
sp_attach_db. Using the Distribution Agent is easiest but not efficient for
moving huge quantities of data across your network. Both backup and restore
and sp_detach_db and sp_attach_db are also easy but will require you to run
sp_change_users_login for each data owner and possibly regrant table
permissions to all nonowners. Don’t forget to copy the
SDE_process_information, SDE_state_locks, and SDE_table_locks tables to
the replication subscriber if you have used the Distribution Agent to move your
data to the subscriber machines.

6. Connect to the Subscribers.

Step 1: Create primary keys

Transactional replication requires a primary key on each replication article. All ArcSDE
tables except business tables will have a primary key already created. Some Geodatabase
metadata tables do not have the primary key implemented; these will have to be created
manually.

Create primary keys on your business tables

We recommend that you add a primary key to a column that has an sde-maintained row-
id. Examples of such columns are OBJECTID columns created by loading data with
ArcGIS tools ArcCatalog or ArcToolbox and columns set or created with sdetable -o
alter_reg. Do not run sdetable -o alter_reg on data loaded with ArcCatalog/ArcToolbox
for the purpose of creating a primary key. Use the existing objectid field instead. If you
did not load your database with these tools but used shp2sde, sdeimport, etc., use the
alter_reg command to create your field with the sde-maintained row-id column.

F:\world_sdex>sdetable -o alter_reg -i sql82k -t cntry94 -C sde -c replid
-u vtest -p go -D vtest

ArcSDE 8.1 Build 633 Tue Nov 21 22:30:10 PST 2000
Attribute Administration Utility

Alter registration for table cntry94. Are you sure? (Y/N): y
Table cntry94’s registration successfully altered.

To add the primary key constraint to this table, use the design table utility within the SQL
Server Enterprise Manager. Find your business table, right-click it, and select “design
table.” In the design table form, select the column on which you’ll create the primary key.
Now click the “Key” button.

Chapter 10 Configuring transactional replication 146

Figure 10.1: In the Design Table dialog, select your primary key field and click the Key button.

Create primary keys on five Geodatabase metadata tables

This only applies to Geodatabase-dependent clients. If you are not using ArcGIS clients
or did not load your data with ArcCatalog or ArcToolbox, skip this step. Otherwise,
create a primary key on the following tables on the listed column(s).

Table Column

GDB_FEATURECLASSES ObjectClassID

GDB_NETWEIGHTASOCS NetworkID

GDB_RELEASE Any column

GDB_DEFAULTVALUES ClassID,FieldName,Subtype

GDB_FIELDINFO ClassID,FieldName

Step 2: Configure the Replication Publisher and Distributor

This step demonstrates using the SQL Server 2000 replication wizards. The process is
similar in SQL Server 7. You can also use the replication stored procedures to set
everything up. We recommend you use the wizards first to get familiar with the process,
then either write out the stored procedures yourself or let the database script them for you.

Configure publishing and distribution

Start the Configure Publishing and Distribution Wizard by selecting and then right-
clicking your server in the SQL Server Enterprise Manager. Choose View taskpad. This
will repaint your details window with the SQL Server 2000 taskpad. Now click the
Wizards tab. Under Setup Replication click Configure Publishing and Distribution

147 ArcSDE Configuration and Tuning Guide for MS SQL Server

Wizard. You can click Next throughout this form as long as your server is listed in the
entries for:

Specify ‘<server name>‘ or another server as a Distributor.
Configure the properties of ‘<server name>‘ as a Distributor.
Configure the properties of ‘<server name>‘ as a Publisher.

1. In the next form, Select Distributor, specify a distribution server if you don’t
want to take the default.

2. Click Next through the following form Configure SQL Server Agent.
(NOTE: This agent may have to be owned by a domain account.)

3. Click Next through the following form Specify Snapshot Folder. (NOTE: You
may get a warning message regarding sharing this folder.)

4. In the next form, Customize the Configuration, select “Yes, let me set the
distribution database properties...” unless you are absolutely certain the defaults
will work for you. In this case, we clicked Yes to customize settings regarding
publication databases and enabling subscribers. Click Next.

Figure 10.2: Click Yes to customize the settings.

5. Click Next through the following form: Provide Distribution Database
Information.

6. In the ensuing form, Enable Publishers, confirm that you have the correct
publisher selected. In most cases, the default will be adequate. Click Next.

7. The next form, Enable Publication Databases, requires you to select which
databases you want to enable for publication. In this case, we will enable two,
the “sde” and “vtest” databases. You do this by selecting a type of replication
per database. Since ArcSDE 8.1 does not support merge replication, you must
only choose the “trans” option. Click Next.

Chapter 10 Configuring transactional replication 148

.

Figure 10.3: Check the boxes in the trans column for each database you wish to enable for replication.

8. Now you’ll see the Enable Subscribers form. All the servers you have registered in
your Enterprise Manager will be listed here. You may not want to enable them all
for replication. In this case, we deselect all but one SQL Server 2000 instance
(FABIO\sql2k) on a machine called “Fabio.” Click Next.

149 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure10.4: Deselect all servers you do not want to enable for replication subscription.

You’ve arrived at the end of the Configure Publishing and Distribution Wizard.
Congratulations! Review the values listed to make sure they are correct. Now click
Finish. The configuration process will start, step through each point, and finish with this
dialog if all went well.

Figure10.5: Successful enabling of the distributor and publisher

Step 3: Create a publication

The MS SQL Server 2000 Books Online define a publication as:

A collection of one or more articles from one database. This grouping of multiple articles makes it
easier to specify a logically related set of data and database objects that you want to replicate
together.

Return to the taskpad view of your server and click the Wizards tab. Select the Create
Publication topic under Setup Replication. In the ensuing form, Create and Manage
Publications on <YourServerName>, you should see your databases listed in the tree
view with the “hand” icon enabled to their left. Select the sde database and click the
Create Publication button. The Create Publication Wizard will start. Click Next.

Chapter 10 Configuring transactional replication 150

1. The Choose Publication Database wizard appears. Your should see your sde
database highlighted in this box. Click Next.

2. The Select Publication Type dialog is next. Click the Transactional Replication radio
button. Click Next.

3. Now the Specify Subscriber Types form displays. In this case, you have enabled one
other server, a SQL Server 2000 machine, for transactional replication. Select all your
platforms that apply here. You can replicate to SQL Server 2000 and SQL Server 7.0 or
heterogeneous data sources such as DB2 or MS Access. Click Next.

4. You should now see the Specify Articles form. A replication “article” is any table,
stored procedure, or view you wish to replicate. In this form, you’ll have to specify which
articles you want to replicate and who should own those articles on the subscriber servers.

NOTE: You must ensure that your articles are correctly mapped to their proper owners.
SQL Server, by default, will change all table, view, and stored procedure ownership to
‘sa.’ This will prevent the sde service from starting on the subscriber machine or client
direct connections from connecting to the data store.

There are several ways to remap the article permissions. This example describes one
method but assumes this condition: all replicated tables, stored procedures, and views in
the ‘sde’ database are owned by the sde user, and everything in the ‘vtest’ database is
owned by user ‘vtest.’ This condition allows the use of the Article Defaults dialog in the
SQL Server 2000 Specify Articles form.

With focus on the Tables row of the Object Type column in the grid control on the left of
this form, click the Article Defaults button. Select Table Defaults, OK. The Default
Table Article Properties form shows. For Destination table owner input ‘sde.’ Click
OK to return to the Specify Articles form.

Figure 10.6: Click the Article Defaults button to open the Default Table Article Properties Form. Input
‘sde’ into the Destination table owner field.

Back in the Specify Articles form, click the Publish All check box in the Tables Object
Type record in the grid control on the left. In the right-hand grid, deselect all the logfile
tables, the SDE_process_information, SDE_table_locks, and SDE_object_locks tables.

151 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure 10.7: Deselect all logfile tables, the SDE_process_information, SDE_table_locks, and
SDE_object_locks tables.

Now shift focus to the Stored Procedures record in the Specify Articles form by clicking
it. Click the Article Defaults button to show the Default Stored Procedure Article
Default Properties form and input ‘sde’ into the owner text field. Click the “Other” tab.
Ensure that this screen has the “Never; replicate the schema only” radio button checked
(see Figure 10.8).

Figure 10.8: Ensure that the “Never; replicate the schema only” radio button is checked.

Chapter 10 Configuring transactional replication 152

Now perform step B for the stored procedures, only do not deselect anything.

Redo steps A and B for views, only do not deselect anything.

Check a few of the stored procedures and tables to ensure they have the proper ownership
by clicking the small button on the right

Click Next.

5. Click Next all the way to the end of the wizard.

Shortcut for point 4:

The steps in point 4 may seem a bit cumbersome. If you feel comfortable with
publications in general, take all the defaults. This will remap all of your table, stored
procedure, and view ownership to sa. When you’ve created the publication, script it to
SQL by right-clicking the publication in the Enterprise Manager and select Generate SQL
Scripts (see Figure 10.9).

Figure 10.9: Generate SQL scripts for your publication.

Save the SQL Script and delete your publication. Open the script in the SQL Server
Query Analyzer and replace all instances of the string @destination_owner =
N‘<some owner Name will be here>’ with the proper owner. For example:

...@destination_owner = N’terra\slim’

...@destination_owner = N’sde’

Now run the entire script to re-create the publication with the proper ownership of your
replicated articles.

Create a publication for each database to be replicated. This means you’ll have to rerun
steps 1–5 for each database you want to replicate.

Step 4: Create subscriptions

The SQL Server Books Online lists a Subscriber as:

153 ArcSDE Configuration and Tuning Guide for MS SQL Server

Servers that receive replicated data. Subscribers subscribe to publications, not to individual articles
within a publication.

In this step, we will create a new push subscription on a SQL Server 2000 instance
named “Fabio\sql2k.” Start the New Subscription Wizard by right-clicking the
publication in the Enterprise Manager’s Replication branch publication node. Select
“Push New Subscription.” Click Next in the Welcome screen.

The Choose Subscribers form appears. You should see at least one enabled subscriber
listed here. If you don’t, you must go back and enable a subscriber for replication. Select
one or more of the listed subscribers. See Figure 10.10.

Figure 10.10: You should see a list of enabled subscribers. Select one or more.

Click Next to proceed to the Choose Destination Database form. You’ll see a text box
with a selected database name here. If you right-clicked the ‘sde:sde’ publication, then
you should see the word ‘sde’ written here. See Figure 10.11.

Chapter 10 Configuring transactional replication 154

Figure 10.11: Detail of Choose Destination Database form. Note the selected publication in the
Enterprise Manager ‘sde:sde.’

Click Next>. Now the Set Distribution Agent Schedule appears. This form controls
latency between the publisher and the subscribers. If you must maintain close
synchronization between the publisher and subscribers, then take the default, continuous
updates. You can set the schedule to update as you please. In this case, we take the
defaults. Click Next>.

The Initialize Subscription form opens. This form controls the subscription initialization
on the subscriber. If you want the Snapshot and Distribution Agents to initialize your
schema and deliver your data to the subscriber machines, then take the defaults. If you’ve
moved or will move your data to the subscriber yourself, click the radio button labeled
“No, the Subscriber already has the schema and data.” In this example, take the default
and check the “Start the Snapshot Agent to begin the initialization process immediately”
check box. This means that the Snapshot and Distribution Agents will initialize the
schema and move all the articles to the subscriber.

155 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure 10.12: Check the “Start the Snapshot Agent.” check box.

Click Next>.

The Start Required Services Form displays. Make sure the status of your SQL Server
Agent is “Running.” Click Next>.

You’ve reached the last screen in the Push Subscription Wizard. Click Finish to start
the agents.

Do points 1–7 for each publication you have. In this case, we will have to redo 1 to 7 for
the ‘vtest’ publication.

Step 5: Deliver your snapshot to your replication subscribers

If you have followed these steps exactly, then most of your data has been moved to the
subscribers. However, you may find that the Agents are too slow in initializing your
schema and moving your data. You can do this manually by backing up your data to be
replicated and restoring it to the subscriber machine. See point 4 of Step 4 for more
information on what to do in the Create Publication Wizard. The next section explains
how to manually distribute your replication snapshot.

Manually initializing your replication snapshot

Again, if you have followed these instructions verbatim, you don’t have to do this. This
only applies to scenarios that want to distribute data manually, outside the scope of the
distribution and snapshot agents.

Move your data to the subscriber machine. You can do this with backup and restore,
sp_detach_db and sp_attach_db, or Data Transformation Services (DTS).

If you’ve ran backup and restore or sp_detach_db and sp_attach_db, you must run
sp_change_users_login to synchronize your SQL Server logins and users.

Chapter 10 Configuring transactional replication 156

Moving the SDE_process_information, SDE_state_locks, and
SDE_table_locks tables to the subscribers

You must move three ArcSDE tables to the replication subscriber, the
SDE_process_information, SDE_state_locks, and SDE_table_locks tables. The easiest
way to do this is to use the ‘DTS.’ Make sure that these tables, when moved to the
subscribers, are still owned by the ‘sde’ user.

Special considerations for MS SQL Server 7.0

SQL Server 7.0 and 2000 have some differences with regard to replication. The most
important one has to do with replicating stored procedures. With SQL Server 2000, you
can replicate the schema of the stored procedures but not their execution. This option is
not available with SQL Server 7.0. SQL Server 7.0 will replicate the stored procedures to
the subscribers only if you allow their execution. This option is not supported in
ArcSDE 8.1. For SQL Server 7.0 replication of ArcSDE 8.1 data, you’ll have to
move all the stored procedures to each subscriber manually.

Step 6: Connect to the subscribers

Now you should be able to make connections to the subscriber machines serving
ArcSDE data. You can either start an SDE service on each subscriber or make direct
connections from ArcSDE clients such as ArcGIS or both. If you want to start an
ArcSDE service on each subscriber, then you must have the ArcSDE application installed
on those servers. However, you don’t have to install the ArcSDE application on a server
setup for Direct Connections. See Chapter 5, ‘Connecting to SQL Server’, in this manual
for more information on this.

157

APPENDIX A

ArcSDE compressed binary

This chapter describes the state of ArcSDE with no configuration changes

made to the server or any spatial databases. This chapter also details how

the ArcSDE application manages your data with regard to indexes,

triggers, and specific SQL Server configuration settings. This chapter

will help you understand how to manage spatial data.

Compressed binary
After the client verifies the geometry, it compresses it and sends it to the server, where it
is stored in compressed binary format in a feature table. Compressing the geometry on
the client offloads the task from the ArcSDE server and reduces the transmission time to
send the geometry to the ArcSDE server. Storing compressed geometry data reduces the
space required to store data by as much as 40 percent.

Compressed binary metadata tables

A compressed binary feature class comprises three tables: the business table, the feature
table, and the spatial index table.

The business table contains attributes and a spatial column. The spatial column is a key to
the feature and spatial index tables.

The relationship between the business table and the feature table is managed through the
spatial column and the FID column. This key, which is maintained by ArcSDE, is
unique.

Appendix A ArcSDE compressed binary 158

NAME DATA TYPE Allow Nulls

fid INTEGER(4) NOT NULL

numofpts INTEGER(4) NOT NULL

entity SMALLINT(2) NOT NULL

eminx FLOAT(8) NOT NULL

eminy FLOAT(8) NOT NULL

emaxx FLOAT(8) NOT NULL

emaxy FLOAT(8) NOT NULL

eminz FLOAT(8) NULL

emaxz FLOAT(8) NULL

min_measure FLOAT(8) NULL

max_measure FLOAT(8) NULL

area FLOAT(8) NOT NULL

len FLOAT(8) NOT NULL

points IMAGE NULL

anno_text VARCHAR(255) NULL

Feature table schema

The feature table stores the geometry, annotation, and CAD in the image type POINTS
column. The internal SQL Server datatype is listed in the table above. The ArcSDE
datatype for each column is defined below.

• fid (SE_INTEGER_TYPE)—contains the unique ID that joins the feature table
to the business table

• entity (SE_INTEGER_TYPE)—the type of geometric feature stored in the
shape column (e.g., point, linestring)

• numofpts (SE_INTEGER_TYPE)—the number of points defining the shape

• eminx, eminy, emaxx, emaxy (SE_FLOAT_TYPE)—the envelope of the shape

• eminz (SE_FLOAT_TYPE)—the minimum Z value in the shape

• emaxz (SE_FLOAT_TYPE)—the maximum Z value in the shape

• min_measure (SE_FLOAT_TYPE)—the minimum measure value in the shape

• max_measure (SE_FLOAT_TYPE)—the maximum measure value in the shape

• area (SE_FLOAT_TYPE)—the area of the shape

• len (SE_FLOAT_TYPE)—the length or perimeter of the shape

• points (SE_SHAPE_TYPE)—contains the byte stream of point coordinates that
define the shape’s geometry

• anno_text (SE_STRING_TYPE)—contains the feature annotation string.

159 ArcSDE Configuration and Tuning Guide for MS SQL Server

NAME DATA TYPE Allow Null?

sp_fid INTEGER(4) NOT NULL

Gx INTEGER(4) NOT NULL

Gy INTEGER(4) NOT NULL

Eminx INTEGER(4) NOT NULL

Eminy INTEGER(4) NOT NULL

Emaxx INTEGER(4) NOT NULL

Emaxy INTEGER(4) NOT NULL

Spatial index table schema

The spatial index table defines the grid range and extent of all geometry in an ArcSDE
feature class.

• sp_fid (SE_INTEGER_TYPE)—contains the unique ID that joins the feature table to
the business table

• gx/gy (SE_INTEGER_TYPE)—defines the feature’s extent in grid cells

• eminx/eminy/emaxx/emaxy (SE_INTEGER_TYPE)—defines the extent of the feature
in system units

In this example the FEATURE-ID column from the WELLS business table references
features from the feature and spatial index tables:

WELL_ID DEPTH ACTIVE FEATURE-ID

1 30029 Yes 101

2 13939 No 102

3 92891 No 103

… … …

FID AREA LEN EMINX,EMINY,… POINTS

101 <compressed feature>

102 <compressed feature>

103 <compressed feature>

… …

SP_FID GX GY {EMINX,EMINY,EMAXX,EMAXY}

101 70 100

102 70 100

103 71 100

…

A business/feature/spatial index key reference

The spatial grid index
The spatial grid index is a two-dimensional index that spans a feature classsuch as the
reference grid you might find on a common road map. You may assign the spatial grid
index one, two, or three grid levels, each with its own distinct cell size. The mandatory
first grid level has the smallest cell size. The optional second and third grid cell levels are
disabled by setting them to 0. If enabled, the second grid cell size must be at three times
larger than the first grid cell size, and the third grid cell size must be three times larger
than the second grid cell size.

Appendix A ArcSDE compressed binary 160

The spatial index table (S<feature class_id>) has seven integer columns that store the grid
cell values, feature envelopes, and corresponding feature IDs. Adding a feature to a
feature class adds one or more grid cells to the spatial index table. The number of records
added to the spatial index table depends on the number of grid cells the feature spans.

The spatial index table contains two indexes. One index is on the SP_FID column, which
contains the feature ID. The other is a clustered composite index that includes all of the
columns of the spatial index table. Since all of the columns of the spatial index table are
indexed, the values of the table are read from the leaf blocks of the index and not the
table data blocks. The result is less I/O and better performance. In addition, the spatial
index table is not accessed whenever the feature class is queried. Therefore, when
considering how to position the tables and indexes to reduce disk I/O contention, you
should be concerned about the positioning of the indexes of the spatial index table but
not the table itself.

Building the spatial index

Every time a feature class is added to a business table, a persistent spatial index is built
for it.

The ArcSDE server manages the spatial index throughout the life of the feature class. As
features are inserted, updated, or deleted, the spatial index is automatically updated.

A load-only mode disables spatial index management until loading is completed. This
boosts loading performance substantially and is imperative for bulk loading efforts (no
queries are allowed in the load-only mode except native SQL-based queries).

Once loading has been completed, the spatial index is enabled by returning it to normal
I/O mode. The conversion from normal I/O mode to load-only I/O mode reconstructs the
spatial index.

Inserting, updating, or deleting a feature updates the spatial index when the feature class
is in normal I/O mode.

ArcSDE overlays the extent of each feature onto the lowest grid level to obtain the
number of grid cells. If the feature exceeds four cells, ArcSDE promotes the feature to the
next highest grid level, if you have defined one. ArcSDE will continue to promote the
feature until it fits within four cells or less or until the highest defined grid level is
reached. On the highest defined grid level, geometries can be indexed by more than four
grid cells.

ArcSDE adds the feature’s grid cells to the spatial index table with their corresponding
shape ID and feature envelope. The grid level is encoded with each grid cell.

In the example below, the feature class has two grid levels. Area shape 101 is located in
grid cell 4 on level 1. A record is added to the spatial index table because the feature
resides within four grid cells (in this case it is one). Area feature 102’s envelope is located
in cells 1 through 8 on level 1. Because the feature’s envelope resides in more than four
grid cells, the feature is promoted to level 2, where its envelope fits within two grid cells.
Feature 102 is indexed at level 2, and two records are added to the spatial index table.

161 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure A.1: Shape 101 is indexed on grid level 1, while shape 102 is indexed on grid level 2 where it
is in only two grid cells.

1 2 3 4

5 6 7 8

102
101

Level 1

Level 2
1 2

Spatial queries and the spatial index

Spatial queries, like finding all the lakes within a state boundary, use the spatial index. A
spatial index is used unless the search order has been set to SE_ATTRIBUTE_FIRST in
the SE_stream_set_spatial_constraints function. When the search order is set to
SE_ATTRIBUTE_FIRST, ArcSDE ignores the spatial index, and the criteria of the
attribute where clause determines which records of the feature class the query returns.

Whenever the spatial index is used, the ArcSDE service generally uses the following
decision process when performing the query:

1. Define the envelope. The envelope could be defined directly by the application such
as the extent defined by the ArcMap zoom in tool. Alternatively, the envelope may
be defined as the envelope of another feature.

2. Join the spatial index table with the feature table and return all features whose grid
cells intersect the envelope.

3. Join the feature table with the business table and apply the criteria of the attribute
where clause to further refine features returned.

Grid cell size impacts the size of the spatial index table. Setting up the spatial index
means balancing the cell sizes—smaller cell sizes mean more cells per shape, which
requires more entries in the spatial index table.

Guidelines for tuning the spatial index

Because client applications and spatial data profiles vary from one system to another, no
single solution fits all. Experienced users of ArcSDE often experiment with the spatial
index, trying different cell sizes and different grid level configurations.

The sdelayer command has several operations that can help you optimize the spatial
index by changing the grid cell sizes and adding new grid levels with the ‘alter’
operation. The ‘stats’ and ‘si_stats’ operations profile your spatial data and current spatial
index.

The following guidelines can help improve the performance of spatial queries.

• Consider how many grid levels are needed and remember that the ArcSDE
server scans the spatial index table once per grid level. Often a single grid level

Appendix A ArcSDE compressed binary 162

is the best solution for a feature class, despite the notion of distributing
geometries evenly across many grid levels to minimize the spatial index entries.

• Use one grid level for pure point type feature class and consider making the cell
sizes large. Spatial queries generally process point geometries faster than other
geometry types.

• Monitor the spatial index. Tuning a spatial index is difficult if the data changes
frequently. Tuning depends on the structure of the spatial data. Periodically
assess the spatial index as your spatial data changes.

• Base the spatial index on the application. Match the spatial index grid cell sizes
to the extent of the application window. By doing so, the application is probably
viewing exact entries in the spatial index table. This helps to size the spatial
index table suitably and reduces the amount of processing because fewer
candidate feature IDs must be evaluated against the feature table (see ‘Spatial
queries and the spatial index’ above).

• For unknown or variable application windows, start by defining one grid level
with a cell size three times the average feature extent size. Query the feature
table to obtain the average feature size with the following SQL statement:

select (avg(emaxx - eminx) + avg(emaxy - eminy)) / 2
from f<N>;

(where <N> is the layer number of the feature class)

Such spatial index configuration minimizes the number of rows in a spatial
index table while maintaining the proficiency of the index because the majority
of features can be referenced by less than one or two grid cells.

• Which application loaded your data? The dataloaders used in ArcCatalog and
ArcToolbox will not calculate an optimal spatial index. The ArcSDE command
tool shp2sde will generally calculate a better grid size. An easy test is to load
the same data with both toolsets (e.g., ArcCatalog and shp2sde) and compare
calculated grid sizes and drawing times for each. Alternatively, load the data
with ArcCatalog or ArcToolbox and run the query listed immediately above.
Use sdelayer –o alter to change your grid size.

• Design the feature class around spatial data categories such as type, geometry
size, and distribution. Sometimes a carefully designed feature class, using these
categories, can substantially boost the performance of spatial queries.

Displaying spatial index statistics

The sdelayer command’s spatial indexstatistics operation, ‘si_stats’, can help you
determine optimum spatial index grid sizes. Optimum grid cell sizes depend on the
spatial extent of all feature geometries, the variation in feature geometry spatial extent,
and the types of searches to be performed on the map feature class. Below is a sample
output generated by si_stats:

$ sdelayer -o si_stats -l victoria,parcels -u av -p mo -i sde81
ArcSDE 8.1 Wed Jan 17 22:43:09 PST 2000
Layer Administration Utility
--
Layer 1 Spatial Index Statistics:
Level 1, Grid Size 200
|---|
| Grid Records: 978341 |
| Feature Records: 627392 |
| Grids/Feature Ratio: 1.56 |
| Avg. Features per Grid: 18.26 |
| Max. Features per Grid: 166 |
| % of Features Wholly Inside 1 Grid: 59.71 |

163 ArcSDE Configuration and Tuning Guide for MS SQL Server

|---|
| Spatial Index Record Count By Group |
| Grids: <=4 >4 >10 >25 >50 >100 >250 >500 |
|---------- ------ --- ---- ---- ---- ----- ----- ----- |
| Shapes: 627392 0 0 0 0 0 0 0 |
% Total: 100% 0% 0% 0% 0% 0% 0% 0%
Level 2, Grid Size 1600 (Meters)

Grid Records: 70532
Feature Records: 36434
Grids/Feature Ratio: 1.94
Avg. Features per Grid: 18.21
Max. Features per Grid: 82
% of Features Wholly Inside 1 Grid: 45.35

Spatial Index Record Count By Group
Grids: <=4 >4 >10 >25 >50 >100 >250 >500
---------- ------ --- ---- ---- ---- ----- ----- -----
Shapes: 35682 752 87 17 3 0 0 0
% Total: 97% 2% 0% 0% 0% 0% 0% 0%

As the output shows, for each defined spatial index level, the following values and
statistics are printed:

• Grid level and cell size.

• Total spatial index records for the current grid level.

• Total geometries stored for the current grid level.

• Ratio of spatial index records per geometry.

• Geometry counts and percentages by group that indicate how geometries are grouped
within the spatial index at this grid level. The column headings have the following
meaning (where ‘N’ is the number of grid cells):

<=N Number of geometries and percentage of total geometries that fall within <= N
grid cells
>N Number of geometries and percentage of total geometries that fall within > N
grid cells

Notice that the ‘>’ groupings include count values from the next group. For instance, the
‘>4’ group count represents the number of geometries that require more than four grid
records as well as more than 10, and so on.

• Average number of geometries per grid.

• Maximum number of geometries per grid. This is the maximum number of geometries
indexed into a single grid.

• Percentage of geometries wholly inside one grid. This is the percentage of all
geometries wholly contained by one grid record.

The output sample shows spatial index statistics for a map feature class that uses two grid
levels: one that specifies a grid size of 200 meters, the other a grid size of 1,600 meters.
When a geometry requires more than four spatial index records, it is automatically
promoted to the next grid level, if one is defined. That is, in no case will a geometry
generate more than four grid records if more than one grid level exists. If a higher grid
level doesn’t exist, then a geometry can have more than four grid records.

In the example above, 627,392 features are indexed through grid level 1. Because the
system automatically promotes geometries that need more than four spatial index records
to the next defined grid level, all 627,392 geometries for grid level 1 are indexed with
four grid records or less. Grid level 2 is the last defined grid level, so geometries indexed
at this level are allowed to be indexed with more than four grid records. At grid level 2,

Appendix A ArcSDE compressed binary 164

there are a total of 36,434 geometries and 70,532 spatial index records;
35,682 geometries are indexed with four grid records or fewer, 752 geometries with more
than four grid records, 87 geometries with more than 10, 17 geometries with more than
25, and three geometries with more than 50 grid records. Percentage values below each
column show how the geometries are dispersed through the eight groups.

Indexes
Every data table in ArcSDE for MS SQL Server has a clustered index. The clustered key
in an ArcSDE table is almost always the join key in a query like the business table's
spatial column or the f table's fid column. The SQL Server query processor favors
clustered indices because a clustered index orders the table data at its leaf level based on
the index key. A normal index would have a pointer to the data page. Clustered indexes
are b-tree structures containing pages with index rows holding a key value and a pointer
to either a data page or a lower-level index page. All searches begin at the top level of
the b-tree, the root node. This page is found in the sysindexes table in the root field.
Within this page are pointers to intermediate pages, themselves holding ranges of values
and pointers to other pages.

Here’s an example of the contents of the root node (shortened for brevity’s sake). The
Page Header displays 0:0 for both m_nextPage and m_prev_Page, indicating that it is a
root node. Also, two data slots are displayed, each with a key value and a pointer to
another page. The pages pointed to are intermediate pages, themselves containing more
key values and pointers.

PAGE HEADER:

Page @0x19A8A000

m_pageId = (1:4713) m_headerVersion = 1 m_type = 2
m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x0
m_objId = 1526296497 m_indexId = 1 m_prevPage = (0:0)
m_nextPage = (0:0) pminlen = 11 m_slotCnt = 133
m_freeCnt = 5968 m_freeData = 1958 m_reservedCnt = 0
m_lsn = (69:1958:6) m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0 m_tornBits = 0

DATA:

Root Node

Intermediate Node

Data DataData

Intermediate Node

Data DataData

Intermediate Node

Data DataData

Figure A.2: B-tree diagram of a clustered index

165 ArcSDE Configuration and Tuning Guide for MS SQL Server

Slot 0, Offset 0x60

Record Type = INDEX_RECORD
Record Attributes = NULL_BITMAP
19a8a060: 00000116 00126800 02000100 0000h........

Slot 1, Offset 0x6e

Record Type = INDEX_RECORD
Record Attributes = NULL_BITMAP
19a8a06e: 00001816 00126a00 02000100 0000j........

Since a cluster orders the storage of a table, you cannot specify different filegroups for
the cluster and its table. For example, if you specify in the dbtune table that the feature
table's clustered index should go on filegroup f_idx and the table should reside on
f_storage, your table will be stored with the index on f_idx.

What will happen here?

DEFAULTS F_INDEX_CLUSTER 1

DEFAULTS F_INDEX_FID WITH FILLFACTOR=75 ON F_IDX

DEFAULTS F_STORAGE ON F_STORAGE

Index maintenance

When you initially create a table with a clustered index and specify a fill factor for that
index, each data page is filled to that fill percentage when you initially insert rows. Later,
when you edit this table with insert, delete, and update statements, the amount of data
contained in each page will tend to increase.

If a data page fills to 100 percent and that particular page incurs an update or an insert,
the page splits approximately in half. Half of the page moves into a newly allocated
extent not contiguous to its former location. This will fragment your tables and increase
query time as the disk spindles must travel to more locations to fetch data.

You can use the fillfactor clause in the dbtune table to delay page splits by limiting the fill
percentage of a data page when it is initially allocated. Any ensuing inserts or updates
will add to the fill percentage of a data page. Monitor page splits with DBCC
SHOWCONTIG, and when your tables become fragmented, rebuild your clustered
indexes or run DBCC INDEXDEFRAG (SQL Server 2000 only) or DBCC
DBREINDEX.

Rebuilding a clustered index will reorder its table and defragment it. Data pages are reset
to their initial fillfactor setting. The simplest way to rebuild an index is to place an
ArcSDE feature class into Load_only_io and then back to normal_io. However, this
won't work on versioned data.

If your data is multiversioned, you don’t need to worry about monitoring the ArcSDE
business table for extent fragmentation. Instead, your delta tables (a&d), feature tables,
and spatial index will become fragmented. You can issue a DBCC DBREINDEX
statement or invoke the DBCC INDEXDEFRAG command.

Here’s an example of DBCC SHOWCONTIG run against a feature class that has
incurred several edits—in this case, many updates and deletes. The output shown below
reflects only fragmentation against the spatial index.

Appendix A ArcSDE compressed binary 166

dbcc showcontig('hydro.s5')

DBCC SHOWCONTIG scanning 's5' table...
Table: 's5' (1622296839); index ID: 1, database ID: 7
TABLE level scan performed.
- Pages Scanned................................: 57
- Extents Scanned..............................: 11
- Extent Switches..............................: 36
- Avg. Pages per Extent........................: 5.2
- Scan Density [Best Count:Actual Count].......: 21.62% [8:37]
- Logical Scan Fragmentation: 33.33%
- Extent Scan Fragmentation: 27.27%
- Avg. Bytes Free per Page.....................: 3780.6
- Avg. Page Density (full).....................: 53.29%

For an exact explanation of these numbers, see the SQL Server Books Online under
DBCC SHOWCONTIG. In this case, 36 extent switches are far too many to cover
57 pages. The best count reflects an optimal amount of extent switches, which in this
case would be 8. Both extent scan fragmentation and logical scan fragmentation should
be as close to 0 as possible. These measurements reflect the ordering of pages and
extents in the index allocation map. Running either of these commands on this table will
defragment the table.

dbcc indexdefrag (sde,'vtest.s5',s5_pk)
dbcc dbreindex(‘hydro.s5’)

DBCC SHOWCONTIG scanning 's5' table...
Table: 's5' (1622296839); index ID: 1, database ID: 7
TABLE level scan performed.
- Pages Scanned................................: 41
- Extents Scanned..............................: 6
- Extent Switches..............................: 5
- Avg. Pages per Extent........................: 6.8
- Scan Density [Best Count:Actual Count].......: 100.00% [6:6]
- Logical Scan Fragmentation: 4.88%
- Extent Scan Fragmentation: 33.33%
- Avg. Bytes Free per Page.....................: 2096.6
- Avg. Page Density (full).....................: 74.10%

DBCC DBREINDEX and DBCC INDEXDEFRAG differ in that INDEXDEFRAG can
be run online. It will not block queries or updates. For relatively unfragmented tables,
DBCC INDEXDEFRAG should run faster than DBREINDEX. For more severely
fragmented data, use DBREINDEX.

You only need to worry about business table fragmentation after running a full compress,
when the delta tables have been flushed into the business table. Therefore, you should
rebuild your business tables’ clustered indexes after running a full compress.

NETWORK PACKET SIZE (SDEPACKETSIZE)

ArcSDE for MS SQL Server stores geometry in an image data type column, points, of
the feature table. Several Geodatabase network tables use image type columns. Microsoft
recommends increasing the size of the network packet size setting when employing
image data type columns.

Network Packet Size is the size of the tabular data scheme (TDS) packets used to
communicate between applications and the relational database engine. The default packet
size is 4 KB and is controlled by the network packet size configuration option.

ArcSDE, by default, sets this to 8192k, double its default setting of 4096k. You can also
make this setting global to your MS SQL Server by using the sp_configure statement's
"network packet size" setting.

sp_configure 'show advanced options',1

167 ArcSDE Configuration and Tuning Guide for MS SQL Server

reconfigure with override

go

sp_configure 'network packet size',8192

reconfigure with override

go

You can control the network packet size setting with the environment variable
SDEPACKETSIZE, although we recommend you stay with the default setting.

Text in row (SQL Server 2000 Only)

SQL Server 2000 allows up to 7 KB of image, text, or ntext data to be stored directly in
row on a data page. SQL Server 7 stored these data types in separate image pages,
located with a 16-byte pointer in the table’s data page. Text in row at SQL Server 2000
permits you to place image type data directly in the data page, and anything exceeding
the setting is placed in a traditional image page. All ArcSDE geometry is stored in an
image type column in the feature table. ArcSDE Raster layers and Geodatabase network
tables use image data types.

This setting is enabled on tables using the command sp_tableoption. ArcSDE 8.1 does
this automatically for you through the dbtune table. The SDE_dbtune table sets a default
of 256 bytes for many settings.

This may not be the best size for all your data. You don’t want to allow too much text in
row space on your data pages if you can’t fill it. For example, it would be unwise to set
this option to 7000 because you would create many more data pages and extents, thus
lengthening the distance a query must travel to retrieve data. Likewise, underestimating
this number would create more image data pages and could produce the same problem.

One way to determine an optimal table text in row setting is to estimate the 80th% size of
all your image type records and store up to that size in the *_text_in_row setting. First
you’ll have to load your data and then run this query:

select top 20 percent(datalength(points)) from boris.f12 order by
datalength(points) desc

This query will list the top 20 percent largest data records in the “points” column of a
feature class’s feature table. You then pick the smallest value from its result set and use

Keyword Parameter Explanation

DEFAULTS B_TEXT_IN_ROW Business tables with BLOB data type

DEFAULTS F_TEXT_IN_ROW Feature tables points column

NETWORK_DEFAULTS B_TEXT_IN_ROW Network business table with BLOB type

NETWORK_DEFAULTS F_TEXT_IN_ROW Feature table for generated junctions class

NETWORK_DEFAULTS::NETWORK B_TEXT_IN_ROW N_ tables with image type columns

Appendix A ArcSDE compressed binary 168

that for a dbtune entry and reload your data, referencing that keyword. In this case, the
80th% value equaled 455, so you would make this entry in the dbtune:

Keyword Parameter Explanation

CARTO F_INDEX_FID WITH FILLFACTOR=75 ON FG_CARTO

CARTO F_TEXT_IN_ROW 455

Now reload this data referencing this keyword to pick up the new F_TEXT_IN_ROW
setting. You could also put this value in the DEFAULTS keyword, but then all data
loads would use this size.

Shp2sde –o create –l silos,shape –f silos –a all –D carto –s bigboy –u
boris –p badinoff –k CARTO

You may want to check if a particular table has been enabled for text in row and what its
current size is set to. Use the OBJECTPROPERTY Transact-SQL metadata function:

select objectproperty(object_id('boris.f12'),'tabletextinrowlimit')

You may not want to reload your data. In this case, you can enable a table for text in row
with sp_tableoption and write a query to copy all the existing image data types into a new
column:

/*
FeatureTable_Text_in_Row.sql
script to copy existing points data into new column
with new text in row value enabled

SQL Server 2000 Only

Script Unsupported by ESRI
*/

sp_tableoption 'boris.f12','text in row',455
go
alter table boris.f12
add newpoints image
go
update boris.f12
set newpoints=points
go
alter table boris.f12
drop column points
go
sp_rename 'boris.f12.newpoints','points','column'
go

If you have a lot of existing data in SQL Server 7.0 and ArcSDE 8.0.2 and desire to move
this data into ArcSDE 8.1 on SQL Server 2000, you’ll want to move this data into the
new text_in_row format. How you perform your upgrade will determine how your data
is moved from a traditional image page into text_in_row.

Text_in_row is enabled with the sp_tableoption command, and 8.1 sets a text_in_row
default (in the sde_dbtune table) for all feature tables to 255 bytes. This means that any
layer or feature class creation in ArcSDE 8.1 on SQL Server 2000 will use the
text_in_row option. To upgrade an existing SQL Server 7.0 database to 8.1 and push
your image data into text_in_row format, you can:

• Perform a Geodatabase copy and paste between two ArcSDE servers: one
running SQL Server 7.0 and the other SQL Server 2000.

• Reload all your data into ArcSDE on SQL Server 2000.

169 ArcSDE Configuration and Tuning Guide for MS SQL Server

• Run the SQL Server 2000 upgrade wizard or restore your SQL Server 7.0
databases to a SQL Server 2000 instance. Once you have done this, run the
FeatureTable_Text_in_Row.sql listed above.

TEXT_IN_ROW for rasters

A raster stored in ArcSDE is composed of four tables. Of those, the sde_blk_<n> table
holds the largest image type column. You can enable text_in_row for this table with the
dbtune entry BLK_TEXT_IN_ROW. For example:

RASTER BLK_TEXT_IN_ROW 2000

Triggers

All feature class business tables have a delete update trigger and an insert trigger. The
insert trigger ensures that the spatial column cannot have duplicate values in the business
table, while the delete–update trigger manages activity against the spatial column in the
business, feature, and spatial index tables. You can view these triggers in the SQL Server
Enterprise Manager.

These triggers are automatically dropped whenever a feature class, either standalone or in
a feature dataset, is multiversioned. They are re-created when a feature class is
“unregistered as versioned.” If you edit one of these triggers and then multiversion the
feature class, the trigger will be dropped.

“I” tables and stored procedures

You’ll notice that once you’ve loaded data or run sdesetupmssql, you will have several
“i” tables and stored procedures in your databases. These stored procedures and tables
are used for fetching feature IDs for feature classes. Editing these tables or stored
procedures is not supported and highly discouraged.

169

APPENDIX B

The components of the
installation

This ArcSDE Configuration and Tuning Guide for Microsoft SQL Server covers
material after the installation of the ArcSDE software. Users should now be prepared
to start the ArcSDE service or make direct client connections to the spatial data store.
If the ArcSDE software has not been installed, refer to the ArcSDE Installation
Manual for directions. This chapter describes what the installation configured on
your hard disk, the services it created, what must be present for a successful ArcSDE
service start, and how to start the ArcSDE service. Direct connection two-tier
ArcSDE setup will not be covered in this chapter; this is covered in Chapter 5,
‘Connecting to SQL Server.’

ArcSDE installation basics

The ArcSDE installation moves several files to your hard disk, sets one environment
variable, modifies the PATH environment variable, edits two system files, and
creates several registry entries. To successfully start the ArcSDE services, there must
be:

1. SDE Service file edits:

The services.sde file should contain the name and TCP/IP port number of the
ArcSDE service. This file is located in %sdehome%\etc. If the ArcSDE service is
called “esri_sde” and resides on port 5151, then this file should read:

Esri_sde 5151/tcp

2. The Windows 2000 or Windows NT Services file:

This file, “services”, is located in %windir%\system32\drivers\etc and must match
the entry in point 1. There must be a carriage return after the last line in this file and
its counterpart in %sdehome%\etc.

3. Windows Registry:

Appendix B The components of the installation 170

The ArcSDE Instance should be listed in the windows registry under these keys:

HKEY_LOCAL_MACHINE\Software\ESRI\ArcInfo\ArcSDE\8.0\ArcSDE for SQL
Server

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Services

The entries in these keys are vitally important. They must be correct for a successful
ArcSDE service start. These entries are discussed below in the section entitled
“Manually deleting and creating an ArcSDE service.”

4. The environment variable %SDEHOME% must point to the installation directory
of the ArcSDE software. There can only be one path, and it must contain the
ArcSDE bin, etc, lib, tools, and codepage folders.

%SDEHOME%=d:\ArcSDE81

5. There must be an ‘sde’ database and an ‘sde’ user. The sde user can either be SQL
Server or Windows NT/Windows 2000 authenticated. Either way, this user must
have at least create table and create procedure within the ‘sde’ database.

6. There must be a valid license. Check in the sdelic.log file in %sdehome%\etc. If
the service is properly licensed, there will be an entry similar to:

Initializing connection to license server (@ZAPHOD)

7. The sde and gdb metadata tables must be present in the database, and they must be
owned by the sde user. There should be at least 20 ‘SDE_*’ tables (not counting the
sde_logfile* tables) and 26 ‘GDB_*’ tables present. There should also be at least
66 ‘SDE_*’ stored procedures in the sde database. The install creates the metadata
tables by running the sdesetupmssql.exe executable. See Chapter 5, ‘Connecting to
SQL Server’, for instructions on running this command.

171 ArcSDE Configuration and Tuning Guide for MS SQL Server

If the seven points above are correct and the ArcSDE service will not start, add the
line SET SDEVERBOSE=TRUE in the dbinit.sde file in %sdehome%\etc and try
again to start the ArcSDE service. If it fails to start, open the sde.errlog in
%sdehome%\etc. There will appear an informative written error message here.

How to start the ArcSDE service

After verification that the above procedure has been correctly performed, it is now
possible to start the ArcSDE service to accept incoming connection requests from
client programs. If a direct connection to ArcSDE without using the three-tier
architecture is desired, refer to Chapter 5, ‘Connecting to SQL Server.’

To start the ArcSDE service, there must be a Windows NT or Windows 2000 named
‘service.’ Use one of the three tools described below to start this service.

Use the “services” utility in the control panel or services ui. Open the services form
in the control panel, locate the ArcSDE service name configured during installation,
select it, and press the Start button.

Use the “net” command from a command prompt. Open a command prompt and
type: net start <service name>

c:\ArcSDE81\bin\net start esri_sde

Use the sdemon tool located in %SDEHOME%\bin. Open a command prompt and
type: sdemon -o start -i <service name> -p <sde dba pass>

c:\ArcSDE81\bin\sdemon -o start -i esri_sde -p big.bob

How to stop the ArcSDE service

Once the ArcSDE service is successfully started, it can be stopped by employing one
of the following methods:

Use the services utility in either the Windows NT control panel or the
Windows 2000 services management console under System Administration. Locate
the ArcSDE service, select it, and click the stop control.

Use the “net” command from a command prompt. Open a command prompt and type
“net stop <service_name>”.

c:\ArcSDE81\bin\net stop esri_sde

Use the sdemon command located in %SDEHOME%\bin. Open a command prompt
and type: sdemon -o shutdown -i <service name> -p <sde admin password>

Appendix B The components of the installation 172

c:\ArcSDE81\bin\sdemon -o shutdown -i esri_sde -p
big.bob

Manually deleting and creating an ArcSDE service

The ArcSDE installation creates an ArcSDE service. The installation prompted the
user for a service name, TCP/IP port number, license manager, and the sde dba
password.

However, once the ArcSDE binaries have been installed on disk, it is possible to
create a new service manually using the ‘sdeservice’ tool in %SDEHOME%\bin.

Multiple ArcSDE services are required if there are multiple instances of Microsoft
SQL Server running simultaneously on a single server. Microsoft SQL Server 2000
allows multiple installations of the database software on a single server. Similarly,
there can be one MS SQL Server 6.5 instance or 7.0 instance running in conjunction
with the MS SQL Server 2000 instance. This can be valuable in upgrading a SQL
Server 7.0 instance to SQL Server 2000. This tool can also be run as a substitute for
uninstalling/reinstalling the ArcSDE software. If it is believed there is a corrupted
instance, delete the ArcSDE service by running sdeservice -o delete, then re-create it
with sdeservice -o create.

To remove an ArcSDE service:

sdeservice -o delete -i esri_sde -p big.bob

Running the above command will remove the service entry from the Windows
Registry in these keys:

• \\HKEY_LOCAL_MACHINE\SOFTWARE\ESRI\ArcInfo\ArcSDE\8.0\ArcSD
E for SQLServer

• \\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service
name>

• \\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001

• \\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002

The minimum required arguments to create a new service are service name (-i
esri_sde), license server name (-l zaphod), and sde dba password (-p big.bob).

173 ArcSDE Configuration and Tuning Guide for MS SQL Server

Sdeservice -o create -p big.bob -l zaphod -i esri_sde

The above command will re-create all the pertinent registry keys. NOTE: This
command’s usage has a [-u <service_user>] [-P <service_user_password>] switch.
For example:

sdeservice -o create -p <DB_Admin_password>
-l <license server name>
[-q] [-H <sde_directory>]
[-d
<ORACLE,SID|ORACLE8I,SID|SQLSERVER|DB2,DB2INSTANCE|INFOR
MIX>]
[-i <service>]
[-u <service_user>] [-P <service_user_password>]
[-s <OLE DB datasource (default: local hostname)>]

Use of the -u and -P arguments is not necessary. Use of these switches specifies a
domain user and password, not a SQL Server user or password. The ArcSDE install
program does not set these switches. Care should be exercised in the use of these
switches. The -p argument specifies the sde user’s password.

The “DATASOURCE” of an ArcSDE service

The sdeservice command has a DATASOURCE argument with the -s switch. The
command sdesetupmssql -o upgrade also has a DATASOURCE argument. A
datasource represents a named SQL Server instance. At SQL Server 7.0, the
datasource is generally the host name of the server hosting the database.

For example, to create an ArcSDE service specifying a datasource, use the -s switch
followed by the name of the database server host. In this case, the datasource is
“vogon”, meaning the name of the server hosting SQL Server 7 is “vogon.” The
license manager resides on the server “zaphod.”

Sdeservice -o create -p big.bob -l zaphod -i esri_sde -s
vogon

Using DATASOURCE to separate ArcSDE and the SQL
Server host

Although this would probably result in detrimental performance, it is possible to
install the ArcSDE software onto a server other than the SQL Server. During the
install or when invoking the sdeservice command, simply specify the datasource in
the -s switch. For example, it is desired to point to the ArcSDE datasource for testing

Appendix B The components of the installation 174

purposes at another SQL Server. The ArcSDE application software is located on the
server “vogon”, but its datasource points to another SQL Server, “marvin.”

sdeservice -o create -p big.bob -l zaphod -i esri_test -
s marvin

When starting this new service, the data store holding ArcSDE tables will actually be
located on another machine, marvin.

Using DATASOURCE with SQL Server 2000

During the installation of SQL Server 2000, the user is prompted to enter an instance
name. This instance name becomes the datasource parameter for ArcSDE 8.1. Also,
to run SQL Server 7 and SQL Server 2000 on the same machine, it is necessary to
provide different instance names so that two different ArcSDE instances can be
created for them. For example, if SQL Server 2000 is installed on server “Vogon,”
the instance name on Vogon for SQL Server 2000 becomes “Vogon\SQL2k.” To
create two ArcSDE services on Vogon for SQL Server 7 and SQL Server 2000, you
would use:

sdeservice -o create -i esri_sql -p big.bob -l zaphod -s
vogon /*SQL Server 7*/
sdeservice -o create -i esri_sql -p bob_2k -l zaphod -s
vogon\sql2k /*SQL Server 2000*/

Their datasource will be listed in the SQL Server Enterprise Manager under the
“SQL Server Group” branch. In the example below, the highlighted name
“OFFWIDTH” would be the datasource name for the server.

175 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure B.1: The highlighted entry “OFFWIDTH” represents a datasource.

To create an instance with OFFWIDTH as the datasource, the service creation
command would look like this:

sdeservice -o create -i esri_sql -p big.bob -l fabio -s
offwidth

Upgrading SDE 3.0.2 or ArcSDE 8.0.2 to ArcSDE 8.1

If either SDE 3.0.2 or ArcSDE 8.0.2 is installed, the ArcSDE 8.1 installation will
attempt to upgrade it to ArcSDE 8.1. NOTE: An upgrade requires the use of a
sysadmin account.

When the install detects an ArcSDE 8.0.2 instance on the server, it makes an internal
connection to SQL Server as a sysadmin fixed server role user, creates new stored
procedures for each ArcSDE table in the database, then grants execute on those
stored procedures to all users who have permissions to the data. New tables at
ArcSDE 8.1 are also created. All data owners are granted create procedure as well.
The upgrade process changes the sde user’s permissions in the sde database to create
table, view, stored procedure, and function (SQL Server 2000 only).

When the install detects an SDE 3.0.2 or 3.0.2.1 instance, it restructures the SDE “F”
tables by moving all data stored in the varbinary columns into the points image
column. Then it upgrades all layers and metadata to the ArcSDE 8.1 format. Once

Appendix B The components of the installation 176

the layer migration is complete, ArcSDE rebuilds all indexes on its data. Upgrading
from SDE 3.0.2 to ArcSDE 8.1 will probably increase the size of your database.

It is also possible to manually upgrade an 8.0.2 or 3.0.2/3.0.2.1 database to
ArcSDE 8.1 with the sdesetupmssql.exe command in %SDEHOME%\bin. The
upgrade option requires the command to be run as a sysadmin user.

To upgrade an ArcSDE 8.0.2 instance to ArcSDE 8.1

Install ArcSDE 8.1. The installer will detect the existence of ArcSDE 8.0.2 and attempt
to upgrade an 8.0.2 schema.

To upgrade, the installer runs the command “sdesetupmssql –o upgrade.” This command
can also be run manually. The command must be run by a sysadmin account.

After the command finishes, check the upgrade.log file in %SDEHOME%\etc. If the file
does not end with a report of success, rerun the command manually until it does. NOTE:
If you have a customized dbtune.sde file from ArcSDE 8.0.2, this file must be
resident in the %SDEHOME%\etc folder to successfully run sdesetupmssql –o
upgrade. The installer does present you with the option of copying an existing
dbtune.sde into the new installation.

To upgrade an SDE 3.0.2 or SDE 3.0.2.1 instance to
ArcSDE 8.1

This example presumes that you will upgrade an SDE 3.x instance running on SQL
Server 7.0 to ArcSDE 8.1.

Shutdown your SDE 3.x instance.

Install MDAC 2.5. Microsoft Data Access Components (MDAC) 2.5 is available
through Microsoft.

Install SQL Server Service Pack 3. This service pack is available through Microsoft.

Install ArcSDE 8.1. The installer will attempt to remove the version 3.x software. The
postinstallation will attempt to upgrade the version 3.x instance to version 8.1. The
upgrade must be run as a sysadmin account.

The upgrade will take some time and depends upon how much data you have and how
large your tables are. If the upgrade returns an error, check the upgrade.log file in
%SDEHOME%\etc, correct the file, and start the command (sdesetupmssql –o upgrade)
again. This command is located in %SDEHOME%\bin. The –o upgrade option must be
run as a sysadmin account. Rerun the command manually until it does. NOTE: If you
have a customized dbtune.sde file from ArcSDE 8.0.2, this file must be resident in
the %SDEHOME%\etc folder to successfully run sdesetupmssql –o upgrade. The
installer does present you with the option of copying an existing dbtune.sde into the new
installation.

Upgrading an ArcSDE 8.1 instance on SQL Server 7 to
SQL Server 2000

It is recommended that users first allow the installation to upgrade any existing
SDE 3.0.2.x or ArcSDE 8.0.2 instances to ArcSDE 8.1 before migrating data into SQL
Server 2000. ArcSDE 8.1 leverages the SQL Server 2000 Text in Row option for each
table with an image data type. Since all F tables and many network tables use image
types, it is beneficial to use this setting. See the SQL Server 2000 Books Online for

177 ArcSDE Configuration and Tuning Guide for MS SQL Server

information regarding sp_tableoption’s ‘text in row’ setting. The option, as it relates to
ArcSDE 8.1, is discussed in Appendix A.

To upgrade ArcSDE from SQL Server 7 to SQL Server 2000

There are two basic options:

Allow the ArcSDE install to upgrade the ArcSDE 8.0.2 or SDE 3.x instance to
version 8.1 or do this manually with the sdesetupmssql tool in %sdehome%\bin. To
perform an upgrade, the user must initiate this command as a member of the sysadmin
fixed server role. This can be either the ‘sa’ user or an Nt/Win2k user.

If you have the licensing available, create an instance of ArcSDE 8.1 on SQL
Server 2000. Next, if ArcGIS is installed, use the Geodatabase copy and paste tool to
copy the data from the version 8.1 instance on SQL Server 7 to the version 8.1 instance
on SQL Server 2000. Using Geodatabase copy and paste will preserve relationship
classes, geometric networks, and other advanced Geodatabase models. This will require
starting two instances of ArcSDE. The image data types (all ArcSDE geometry) will be
created with a default text in row setting of 255. The new dbtune table sets this
automatically.

If ArcGIS is not installed or you don’t have the licensing to maintain two instances of
ArcSDE, use SQL Server tools such as backup and restore, sp_detach_db and
sp_attach_db, DTS, or the upgrade wizard. However, the image data will not be upgraded
to the text in row format. Appendix A shows a t-sql example of moving image type data
into the SQL Server 2000 text_in_row format.

When upgrading from SQL Server 7 to SQL Server 2000 use the sp_dbcmptlevel stored
procedure to set certain database behaviors to be compatible with the specified earlier
version of SQL Server. A server upgraded from SQL Server 7 to SQL Server 2000 will
have all its databases compatibility level set to level 80. If a server is upgraded from SQL
Server 6.0 or 6.5 will have its databases set to the SQL Server version which the database
was last used, either 60 or 65. All databases in SQL Server 2000 must have their
compatibility level set to 80. To verify that all databases are set to compatibility level 80,
execute the following procedure:

EXEC sp_dbcmptlevel ‘database name’

To change to a different compatibility mode, run the following command:

EXEC sp_dbcmptlevel ‘database name’ compatibility-mode

The sp_dbcmptlevel command is covered in greater detail in SQL Server Books Online.

In addition the sdesetupmssql –o upgrade command must be run on upgraded instances
of SQL Server 7 to SQL Server 2000. To perform an upgrade, the user must initiate this
command as a member of the sysadmin fixed server role. This can be either the ‘sa’ user
or an Nt/Win2k user The syntax of this command is:

-o upgrade [-H <sde_directory>] [-u <DB_Admin_user>] [-p <DB_Admin_password>]

[-s datasource] [-N] [-q]

Upgrade examples
NOTE: These are simple examples of what you can do to upgrade your instance. There
are many ways to do this, the most simple of which, and the only supported method, is to
let the installer upgrade an 8.0.2 instance to 8.1 or manually run the sdesetupmssql –o
upgrade command.

Appendix B The components of the installation 178

Example one: ArcSDE 8.0.2 on MS SQL Server 7.0 to ArcSDE 8.1 on SQL
Server 2000 (different servers).

Install SQL Server 2000 and ArcSDE 8.1 onto the new server.

Create the same databases and users as presently configured on the SQL Server 7.0,
ArcSDE 8.0.2 instance.

Start an ArcSDE 8.1 service on the SQL Server 2000 server.

Use the copy and paste tool from ArcCatalog to move the data from the 8.0.2 instance on
SQL Server 7.0 to the ArcSDE 8.1 instance on SQL Server 2000.

Note: You must have enough ArcSDEServer licenses to do this.

After the copy and paste has finished, backup the database.

Example two: ArcSDE 8.0.2 on MS SQL Server 7.0 to ArcSDE 8.1 on SQL
Server 2000 (same server)

Install ArcSDE 8.1 onto the server. The installer upgrades the version 8.0.2 instance to
ArcSDE 8.1. The installer will execute the command “sdesetupmssql –o upgrade” as a
sysadmin user. You must supply this username and password during the postinstallation
portion of the install. This command is located in the %SDEHOME%\bin folder of the
ArcSDE 8.1 installation.

Start the ArcSDE 8.1 service to verify that the upgrade succeeded. If the service will not
start, check the “upgrade.log” file in %SDEHOME%\etc for information. Correct any
errors listed in this log and manually re-execute the sdesetupmssql –o upgrade command
as a sysadmin user. Repeat this process until the upgrade succeeds.

Install SQL Server 2000 onto the server. Shutdown the ArcSDE 8.0.2 service. Use a
SQL Server tool to move the 7.0 databases to the 2000 server. You can use backup and
restore, sp_detach_db and sp_attach_db, DTS, or the SQL Server 2000 Copy Database
Wizard to do this. See the SQL Server 2000 Books Online for this information and
Chapter 8, ‘Backup and recovery’, of this guide for an example of using backup and
restore to move databases. If you restore a backup of your SQL Server 7.0 databases to a
SQL Server 2000 instance, you must manually execute the sp_dbcmptlevel stored
procedure to set your database’s compatibility level to ‘80’ (SQL Server 2000). You
must do this for all restored databases. For example:

sp_dbcmptlevel sde,’80’

Modify your existing ArcSDE 8.1 service to point to the SQL Server 2000 datasource.
Use the sdeservice –o modify tool to change the –r DATASOURCE argument of your
service. You can also delete and re-create your service. See the section above, Manually
deleting and creating an ArcSDE service, for information on how to do this.

Start your ArcSDE 8.1 service.

Example three: ArcSDE 8.0.2 on MS SQL Server 7.0 to ArcSDE 8.1 on SQL
Server 2000 (same server, maintaining both the version 8.0.2 instance and version 8.1
instance). This upgrade scenario is more involved. In order to maintain both the
older service and the version 8.1 service on the same machine, you’ll need to do the
following:

Install SQL Server 2000 onto the server. Installing SQL Server 2000 onto the same
machine as SQL Server 7.0 is possible with SQL Server 2000’s support of multiple
instances. See the section in this guide on multi-instance support for more information.

179 ArcSDE Configuration and Tuning Guide for MS SQL Server

Before installing ArcSDE 8.1, shutdown ArcSDE 8.0.2. Make a copy of your older
SDEHOME (all the directories and files located beneath SDEHOME). You will need
to copy it back after the 8.1 installation is finished.

Install ArcSDE 8.1. It will remove your ArcSDE 8.0.2 installation, delete your
ArcSDE 8.0.2 service, and remove your port entry in the
%windir%\system32\drivers\etc\services file. Do not drop the sde database. SDEHOME
will be set to the 8.1 install directory, and your path will include the 8.1 install
directory\bin folder.

Start the ArcSDE 8.1 postinstallation. Click Next> in the Welcome Screen.

Click Next> in the Define User Environment Screen to create the sde login, and sde
database and to add the login to the database as a user. If you precreated the sde login
and database and have granted the login access to the sde database, press Skip in this
screen and click Next in Setup Configuration Files Screen and go to step 8.

In the next form, input a sysadmin user and password and your SQL Server 2000
datasource. The wizard will proceed through the steps of creating an sde login and
database. The following screenshot displays a SQL Server 2000 datasource on a
machine called “Rift.”

Click Next> through the wizard until you get to the Repository Setup form.

The Repository Setup form will create the sde metadata if it does not exist or upgrade a
version 3.0.2.x sde or version 8.0.2 ArcSDE instance if it is present. Click Next>. Click
Skip if your version 8.1 metadata already exists and proceed to step 10.

Now connect as a sysadmin user and input your SQL Server 2000 datasource. Again, see
the above screenshot for how this should look. NOTE: If you input your SQL
Server 7.0 Datasource here, you will upgrade your version 8.0.2 instance to version
8.1 Finish the version 8.1 Postinstallation process of creating and starting a service.

Open a DOS prompt and change directories into the ArcSDE 8.0.2 %SDEHOME%\bin
folder. Re-create your ArcSDE 8.0.2 service with the sdeservice –o create command.
Make sure you get the datasource argument correct; your datasource should be the name
of the SQL Server 7.0 server. NOTE: You cannot point to two instances of ArcSDE
at the same datasource. Don’t forget to use the –H flag of the sdeservice –o create
command to register the correct SDEHOME for version 8.0.2.

C:\ArcSDE802\bin\sdeservice –o create –p <sde user password in ss7> -l
<license server> -H c:\ArcSDE802 –i esri_sql802 –s <server name>

Open the services file in %WINDIR%\system32\drivers\etc and readd your ArcSDE 802
port. For example, you’ll need to readd this line:

Appendix B The components of the installation 180

esri_sql802 5151/tcp

Before starting both services, make sure your services are correct by running sdeservice
–o list within the bin folder of each SDEHOME, for example, for ArcSDE 8.0.2:

C:\ArcSDE802\bin>sdeservice -o list

SDE service Information
--
Service Name: ArcSde Service(esri_sql802)
Service SDEHOME: C:\ArcSDE802
Service License Server: @fabio
Service Datasource: rift
Service Status: SERVICE_STOPPED

For ArcSDE 8.1:

C:\sde81\bin>sdeservice -o list

SDE service Information
--
Service Name: ArcSde Service(sde81)
Service SDEHOME: C:\sde81
Service License Server: @fabio
Service Datasource: rift\sql2k
Service Status: SERVICE_STOPPED

Note that in this example, each service has its own SDEHOME. Also note that each
service has its own datasource argument. The ArcSDE 8.0.2 service points to the rift
datasource, while the ArcSDE 8.1 service points to the rift\sql2k SQL Server 2000
datasource.

Now start one or both instances. NOTE: You’ll have to have the proper licensing to do
this. You can run both instances to test your data under the 8.1 configuration. You can
move data from the 8.0.2 instance by copying and pasting with the ArcCatalog or
exporting with sdeexport, sde2shp, etc.

Example four: ArcSDE 8.0.2 or SDE 3.0.2.x on SQL Server 7.0 to ArcSDE 8.1 on SQL
Server 2000 (same machine)

Make backups of all your sde and spatial databases using the SQL Server 7.0 backup
tool.

Shutdown your ArcSDE 8.0.2 or SDE 3.0.2.x instance. Uninstall the SDE software. If
you have customized dbtune.sde, you must save a copy of this file!

Install SQL Server 2000. Create an identical set of logins on the SQL Server 2000
instance as exist on the SQL Server 7.0 instance.

Do one of the following three steps:

Restore all the SQL Server 7.0 databases to the SQL Server 2000 instance. Run
sp_dbcmptlevel for each database you’ve restored:

sp_dbcmptlevel sde,’80’

or

Run sp_change_users_login ‘update_one’,’<user>‘,’<user>‘ for each user, in each,
database. A detailed example of this is given in Chapter 8, ‘Backup and recovery’.

181 ArcSDE Configuration and Tuning Guide for MS SQL Server

Run sp_detach_db on the sde and any other spatial database in the SQL Server 7.0
instance. In the SQL Server 2000 instance, run sp_attach_db to reattach them to the
newer server. Again, you must run sp_change_users_login.

or

Use the SQL Server 2000 Copy Database Wizard to copy the SQL Server 7.0
databases to the SQL Server 2000 instance.

Install ArcSDE 8.1. Run the postinstallation utility and let it upgrade your
8.0.2 databases from SQL Server 7.0 to ArcSDE 8.1 in SQL Server 2000. NOTE: If the
upgrade utility throws an error, note the error, check the upgrade.log file in %SDEHOME
%\etc, correct the listed error, and manually restart sdesetupmssql –o upgrade.
Sdesetupmssql –o upgrade must be run as a sysadmin user. For example:

sdesetupmssql –o upgrade –u sa –p sa.password –s rift\sql2k –H
c:\sde81\sqlexe

You can run this command as many times as needed until the upgrade completes
successfully. If you customized your dbtune.sde file from 8.0.2, you must run the
upgrade process, either from the postinstall or using the sdesetupmssql –o upgrade
command, with the customized dbtune.sde file in %sdehome%\etc. The installer will
prompt you to use a different dbtune.sde file during the postinstallation.

7.0 Start your sde service: Net start esri_sde

Troubleshooting the ArcSDE service startup

Once you have the ArcSDE software on disk and Microsoft SQL Server installed,
you should not have to remove either of them. Follow the process listed below, and
you should be able to start your ArcSDE service once you’re done.

1. Check for the existence of an ‘sde’ user and ‘sde’ database: Verify that the sde
database exists and that the sde login is a user in this database by logging in as ‘sde.’
Make note of the sde user’s password. The sde user must have at least create table,
create view, and create procedure in the sde database. This can be verified by right-
clicking the database in the Enterprise Manager and selecting Properties. Then click
the Permissions tab and check what permissions the ‘sde’ user has in the sde
database. Verify that the sde and gdb metadata tables exist by examining the sde
database. There should be approximately 20 SDE_* tables, 26 GDB_* tables, and 66
SDE_* stored procedures. If these tables and stored procedures do not exist, they
must be created by running the sdesetupmssql.exe command located in
%SDEHOME%\bin. See Chapter 5, ‘Connecting to SQL Server,’ for instructions on
running this command.

2. Check that the ArcSDE service is listed in both %SDEHOME%\etc\services.sde
and %WINDIR%\system32\drivers\etc\services. The same service should be present
in both. If this service is the last entry in these files, put a carriage return after it
(blank space). The entries should look like the following:

Esri_sde 5151/tcp

3. The ArcSDE service must be correctly entered in the Windows Registry. The most
critical locations in the registry are:

Appendix B The components of the installation 182

HKEY_LOCAL_MACHINE\Software\ESRI\ArcInfo\ArcSDE\8.0\ArcSDE for SQL
Server—In this key, there will be the name of your service, its registered datasource,
its license server, DBA_password, and SDEHOME. See Figure B.1. This service
must be located under the “ArcSDE for SQL Server” key. Its DATASOURCE must
point to your named SQL Server. A valid license_server should be listed with the
@<name> convention. SDEHOME should point to an actual location on disk.

183 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure B.2: A Service Entry in the HKEY_LOCAL_MACHINE\Software key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services—In this key,
there will be a Windows representation of the actual service. See Figure B.2. The
DependOnService represents the -d flag of the sdeservice -o create command and
identifies a dependency between the ArcSDE service and another Windows NT
service, most likely the MSSQLSERVER process. The ImagePath gives the path to
the giomgr.exe executable, the io manager.

Appendix B The components of the installation 184

Figure B.3: A service entry in the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet key

Instead of editing the registry directly, delete the service with sdeservice -o delete.
Since this is a DOS executable, be aware of the path from which it is run. Run it
from %SDEHOME%\bin to ensure that it picks up the correct libraries. See the
above section, ‘Manually deleting and creating an ArcSDE service’, for more
information. Confirm that the password and data source arguments are entered
correctly.

4. Confirm that there is a valid license manager process running on your network.
The license manager may reside locally on the server, or it may be accessed on the
network. You identify the name of the license host when installing or with the -l
argument to the sdeservice -o create command. Verify your services’ license server
by typing sdeservice -o list from a DOS prompt:

C:\snoopyng>sdeservice -o list -i esri_sql
SDE service Information
--

Service Name: ArcSde Service(esri_sql)
Service SDEHOME: C:\arcsde81\
Service License Server: @fabio
Service Status: SERVICE_STOPPED

In this example, the service “esri_sql” has its license service running on fabio. Fabio
is identified with the “@” symbol. Sometimes, you’ll correctly setup the license
server but for some reason not be able to access a license. In this case, ArcSDE
appears to hang. You can tell if this has happened on Windows NT by examining the
Windows NT Service Control panel’s start and stop buttons. If both are grayed out,
your service cannot access a valid license. You will also see an ‘unable to initialize

185 ArcSDE Configuration and Tuning Guide for MS SQL Server

connection to license server error’ message in the sdelic.log file in
%SDEHOME%\etc.

5. In some rare instances, there will be an incorrect installation of MDAC, or it can
become corrupted. MDAC is the Microsoft Data Access Components and is used to
access the data stores in SQL Server through OLE DB. ArcSDE 8.1 supports MDAC
2.6 and 2.5. To verify which MDAC is installed, check the version of msado15.dll in
program files\common files\system\ado or by downloading the component checker
from Microsoft. File version 2.5.4403 and up are supported.

Now attempt to start the service. If it still cannot start, add the line “set
SDEVERBOSE=TRUE” in the dbinit.sde file in %sdehome%\etc. The word ‘set’
must be in lower case. Now try again to start the service. Then open the sde.errlog
file in %sdehome%\etc. There will be an informative error message written here.

186

APPENDIX C

Storing raster data

A raster is a rectangular array of equally spaced cells, which taken as a whole

represent thematic, spectral, or picture data. Raster data can represent

everything from qualities of land surface such as elevation or vegetation to

satellite images, scanned maps, and photographs.

You are probably familiar with raster formats such as tagged image file

format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics

Interchange Format (GIF) that your Internet browser renders. These rasters

are composed of one or more bands. Each band is segmented into a grid of

square pixels. Each pixel is assigned a value that reflects the information it

represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products, review
Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

ArcSDE stores raster datasets similar to the way it stores compressed binary feature classes
(see Appendix A, ‘ArcSDE compressed binary’). A raster column is added to a business table,
and each cell of the raster column contains a reference to a raster stored in a separate raster
table. Therefore, each row of a business table references an entire raster.

ArcSDE stores the raster bands in the raster band’s table. ArcSDE joins the raster band’s table
to the raster table on the raster_id column. The raster band table’s raster_id column is a
foreign key reference to the raster table’s raster_id primary key.

ArcSDE automatically stores any existing image metadata such as image statistics, colormaps,
or bit-masks in the raster auxiliary table. The rasterband_id column of the raster auxiliary table
is a foreign key reference to the primary key of the raster band’s table. ArcSDE joins the two
tables on this primary/foreign key reference when accessing a raster band’s metadata.

Appendix C Storing raster data 187

The raster block’s table stores the pixels of each raster band. ArcSDE tiles the pixels into
blocks according to a user-defined dimension. ArcSDE does not have a default dimension,
however, applications that store raster data in ArcSDE do. ArcToolbox and ArcCatalog, for
example, use default raster block dimensions of 128-by-128 pixels per block. The dimensions
of the raster block along with the compression method, if one is specified, determine the
storage size of each raster block. You should select raster block dimensions that, combined

The rendition of rasters

Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly
displayed on computer displays, which employ a
red-green-blue color rendition model.

Raster datasets have one or many
bands. In multiband rasters, a band

represents a segment of the
electromagnetic spectrum that has

been collected by a sensor.

Red
band

Green
band

Blue
band

Red-green-blue
composite

Attribute values
range from 0 to 255

in each band

255

0

Displaying multiband rasters

Electromagnetic spectrum

band 1

band 2

band 3

Bands often represent a portion of the electromagnetic
spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Monochrome
image

0 0 0 0 1 1

1 0 0 1 1 0

1 0 1 1 0 0

0 0 0 1 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0

251

41

86

118

141

187 236

201

16 25532

66

126

124 183

191 198

0

243

68

76 124

162

170

212

251 10

255

56

68

124

132

152

218

234

00 1 255

Grayscale
image

Display colormap
image

1 3

42

5

1

3

4

2

5

1 3

4

2

5

1

3

42

5

1

3

4

2

5

1 3

42

5

1 34 2

5

2

1

3

4

2

5

Colormap

red green blue

64

255 0

128

3232

0

255

255 128

25500

128

255

In a monochrome image, each cell
has a value of 0 or 1. They are often
used for scanning maps with simple
linework, such as parcel maps.

In a grayscale image, each cell has a
value from 0 to 255. They are often
used for black-and-white aerial
photographs.

One way to represent colors on an
image is with a colormap. A set of
values is arbritrarily coded to match a
defined set of red-green-blue values.

Cell values in single-band rasters can be drawn in these three basic ways.

Displaying single-band rasters

188 ArcSDE Configuration and Tuning Guide for MS SQL Server

with the compression method, allow each row of the raster block table to fit within SQL
Server.

The raster block’s table contains the rasterband_id column, which is a foreign key reference to
the raster band table’s rasterband_id primary key. ArcSDE joins these tables together on the
primary/foreign key reference when accessing the blocks of the raster bands.

ArcSDE populates the raster blocks table according to a declining resolution pyramid. The
height of the pyramid is determined by the number of levels, specified by application. The
application such as ArcToolbox or ArcCatalog may allow you to define the levels, or it may
request that ArcSDE calculate them, or it may offer both possible choices.

The pyramid begins at the base, or level 0, which contains the original pixels of the image.
The pyramid proceeds toward the apex by coalescing four pixels from the previous level into
a single pixel at the current level. This process continues until less than four pixels remain or
until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels. The
addition of the pyramid levels increases the number of raster blocks by one third. However,
since it is possible for the user to specify the number of levels, the apex of the pyramid may
not be obtainable, and therefore the size increase of the raster blocks table is restricted to the
number of resolution levels added.

Figure C.1: When you build a pyramid more rasters are created by progressively downsampling the
previous level by a factor of two until the apex. As the application zooms out and the raster cells grow
smaller than the resolution threshold, ArcSDE selects a higher level of the pyramid. The purpose of the
pyramid is to optimize display performance.

The pyramid allows ArcSDE to provide the application with a constant resolution of pixel
data regardless of the rendering window’s scale. Data of a large raster transfers quicker to the
client when a pyramid exists since ArcSDE can transfer fewer cells of a reduced resolution.

Raster schema
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so long as

Appendix C Storing raster data 189

it conforms to SQL Server’s column naming convention. ArcSDE restricts one raster column
per business table.

The raster column is a foreign key reference to the raster_id column of the raster table created
during the addition of the raster column. Also joined to the raster table’s raster_id primary
key, the raster band table stores the bands of the image. The raster auxiliary table, joined one-
to-one to the raster bands table by rasterband_id, stores the metadata of each raster band. The
rasterband-id also joins the raster band’s table to the raster blocks table in a many-to-one
relationship. The raster blocks table rows store blocks of pixels, determined by the dimensions
of the block.

190 ArcSDE Configuration and Tuning Guide for MS SQL Server

Figure C.2: When ArcSDE adds a raster column to a table, it records that column in the sde user’s
raster_columns table. The rastercolumn_id is used in the creation of the table names of the raster, raster
bands, raster auxiliary, and raster blocks table.

The sections that follow describe the schema of the tables associated with the storage of raster
data. Refer to Figure C.2 for an illustration of these tables and the manner in which they are
associated with one another.

Appendix C Storing raster data 191

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the sde user’s schema. ArcSDE also
creates four tables to store the raster images and metadata associated with each one.

NAME DATA TYPE NULL?

rastercolumn_id INT(4) NOT NULL

description VARCHAR(65) NULL

database_name VARCHAR(32) NULL

owner VARCHAR(32) NOT NULL

table_name VARCHAR(160) NOT NULL

raster_column VARCHAR(32) NOT NULL

cdate INT(4) NOT NULL

config_keyword VARCHAR(32) NULL

minimum_id INT(4) NULL

base_rastercolumn_id INT(4) NOT NULL

rastercolumn_mask INT(4) NOT NULL

srid INT(4) NULL

Raster columns table

• rastercolumn_id (SE_INTEGER_TYPE)—the table’s primary key.

• description (SE_STRING_TYPE)—The description of the raster table.

• database_name (SE_STRING_TYPE)—The name of the database.

• owner (SE_STRING_TYPE)—The owner of raster column’s business table.

• table_name (SE_STRING_TYPE)—The business table name.

• raster_column (SE_STRING_TYPE)—The raster column name.

• cdate (SE_INTEGER_TYPE)—The date the raster column was added to the
business table.

• config_keyword (SE_STRING_TYPE)—The DBTUNE configuration keyword
whose storage parameters determine how the tables and indexes of the raster are
stored in the SQL Server database. For more information on DBTUNE
configuration keywords and their storage parameters, review Chapter 3,
‘Configuring DBTUNE storage parameters.’

• minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster,
establishes value of the raster table’s raster_id column.

• base_rastercolumn_id (SE_INTEGER_TYPE)—If a view of the business table is
created that includes the raster column, an entry is added to the
RASTER_COLUMNS table. The raster column entry of the view will have its own

192 ArcSDE Configuration and Tuning Guide for MS SQL Server

rastercolumn_id. The base_rastercolumn_id will be the rastercolumn_id of the
business table used to create the view. This base_rastercolumn_id maintains
referential integrity to the business table. It ensures that actions performed on the
business table raster column are reflected in the view. For example, if the business
table’s raster column is dropped, it will also be dropped from the view (essentially
removing the view’s raster column entry from the RASTER_COLUMNS table).

• rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used, maintained for
future use.

• rid (SE_INTEGER_TYPE)—The spatial reference ID (srid) is a foreign key
reference to the SPATIAL_REFERENCES table. For images that can be geo-
referenced, the SRID establishes the X and Y offset translation factor and the scale
factor for storage of the image coordinates into the 32-bit integer ArcSDE coordinate
storage system. It also stores the coordinate reference system the image was created
under.

Business table

In the example that follows, the fictitious BUILD_FOOTPRINTS business table contains the
raster column house_image. This is a foreign key reference to the raster table created in the
user’s schema. In this case the raster table contains a record for each raster of a house. It
should be noted that images of houses cannot be georeferenced. Therefore, the SRID column
of the RASTER_COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

Building_id INT(4) NOT NULL

building_footprint INT(4) NOT NULL

house_picture INT(4) NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column

• building_id (SE_INTEGER_TYPE)—the table’s primary key

• building_footprints (SE_INTEGER_TYPE)—a spatial column and foreign key
reference to a feature table containing the building footprints

• house_image (SE_INTEGER_TYPE)—a raster column and foreign key reference to
a raster table containing the images of the houses located on each building footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS_<raster_column_id> in the SQL Server, stores a record
for each image stored in a raster column. Raster_column_id is assigned by ArcSDE whenever
a raster column is created in the database. A record for each raster column in the database is
stored in the ArcSDE RASTER_COLUMNS system table maintained in the sde user’s
schema.

Appendix C Storing raster data 193

NAME DATA TYPE NULL?

Raster_id INT(4) NOT NULL

raster_flags INT(4) NULL

description VARCHAR(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id)

• raster_id (SE_INTEGER_TYPE)—The primary key of the raster table and unique
sequential identifier of each image stored in the raster table

• raster_flags (SE_INTEGER_TYPE)—A bitmap set according to the characteristics
of stored image

• description (SE_STRING_TYPE)—A text description of the image (not
implemented at ArcSDE 8.1)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The raster
band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of each image
stored in the raster table. The raster_id column of the raster band table is a foreign key
reference to the raster table’s raster_id primary key. The rasterband_id column is the raster
band table’s primary key. Each raster band in the table is uniquely identified by the sequential
rasterband_id.

194 ArcSDE Configuration and Tuning Guide for MS SQL Server

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

sequence_nbr INT(4) NOT NULL

raster_id INT(4) NOT NULL

name VARCHAR(65) NULL

band_flags INT(4) NOT NULL

band_width INT(4) NOT NULL

band_height INT(4) NOT NULL

band_types INT(4) NOT NULL

block_width INT(4) NOT NULL

block_height INT(4) NOT NULL

block_origin_x FLOAT(8) NOT NULL

block_origin_y FLOAT(8) NOT NULL

eminx FLOAT(8) NOT NULL

eminy FLOAT(8) NOT NULL

emaxx FLOAT(8) NOT NULL

emaxy FLOAT(8) NOT NULL

cdate INT(4) NOT NULL

mdate INT(4) NOT NULL

Raster band table schema

• rasterband_id (SE_INTEGER_TYPE)—The primary key of the raster band table
that uniquely identifies each raster band.

• sequence_nbr (SE_INTEGER_TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key as a second way to uniquely identify
the raster band.

• raster_id (SE_INTEGER_TYPE)—The foreign key reference to the raster table’s
primary key. Uniquely identifies the raster band when combined with sequence_nbr
as a composite key.

• name (SE_STRING_TYPE)—The name of the raster band.

• band_flags (SE_INTEGER_TYPE)—A bitmap set according to the characteristics
of the raster band.

• band_width (SE_INTEGER_TYPE)—The pixel width of the band.

• band_height (SE_INTEGER_TYPE)—The pixel height of the band.

• band_types (SE_INTEGER_TYPE)—A bitmap band compression data.

• block_width (SE_INTEGER_TYPE)—The pixel width of the band’s tiles.

Appendix C Storing raster data 195

• block_height (SE_INTEGER_TYPE)—The pixel height of the band’s tiles.

• block_origin_x (SE_FLOAT_TYPE)—The leftmost pixel.

• block_origin_y (SE_FLOAT_TYPE)—The bottom-most pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold the
coordinates of the extent.

• eminx (SE_FLOAT_TYPE)—The band’s minimum x-coordinate.

• eminy (SE_FLOAT_TYPE)—The band’s minimum y-coordinate.

• emaxx (SE_FLOAT_TYPE)—The band’s maximum x-coordinate.

• emaxy (SE_FLOAT_TYPE)—The band’s maximum y-coordinate.

• cdate (SE_FLOAT_TYPE)—The creation date.

• mdate (SE_FLOAT_TYPE)—The last modification date.

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel data
of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the raster
band data enables efficient storage and retrieval of the raster data. The raster blocks can be
configured so that the records of the raster block table fit with a SQL Server data block,
avoiding the adverse effects of data block chaining.

The rasterband_id column of the raster block table is a foreign key reference to the raster band
table’s primary key. A composite unique key is formed by combining the rasterband_id,
rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

rrd_factor INT(4) NOT NULL

row_nbr INT(4) NOT NULL

col_nbr INT(4) NOT NULL

block_data image NOT NULL

Raster block table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster band
table’s primary key.

• rrd_factor (SE_INTEGER_TYPE)—The reduced resolution dataset factor
determines the position of the raster band block within the resolution pyramid. The
resolution pyramid begins at 0 for the highest resolution and increases until the
raster’s bands lowest resolution level has been reached.

• row_nbr (SE_INTEGER_TYPE)—The block’s row number.

196 ArcSDE Configuration and Tuning Guide for MS SQL Server

• col_nbr (SE_INTEGER_TYPE)—The block’s column number.

• block_data (SE_BLOB_TYPE)—The block’s tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores optional
raster metadata such as the image color map, image statistics, and bit masks used for image
overlay and mosaicking. The rasterband_id column is a foreign key reference to the primary
key of the raster band table.

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

type INT(4) NOT NULL

object image NOT NULL

Raster auxiliary table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster band
table’s primary key

• type (SE_INTEGER_TYPE)—A bitmap set according to the characteristics of the
data stored in the object column

• object (SE_BLOB_TYPE)—May contain the image color map, image statistics, etc.

	Contents
	CHAPTER 1 Getting started
	CHAPTER 2 Configuring SQL Server
	CHAPTER 3 Configuring DBTUNE storage parameters
	CHAPTER 4 Managing tables, feature classes, rasters, and views
	CHAPTER 5 Connecting to SQL Server
	CHAPTER 6 National language support
	CHAPTER 7 Standby servers and log shipping
	CHAPTER 8 Backup and Recovery
	CHAPTER 9 Configuring snapshot replication
	CHAPTER 10 Configuring transactional replication
	APPENDIX A ArcSDE compressed binary
	APPENDIX B The components of the installation
	APPENDIX C Storing raster data

